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Abstract

We introduce a family of kernels on discrete
data structures within the general class of de-
composition kernels. A weighted decomposi-
tion kernel (WDK) is computed by dividing
objects into substructures indexed by a selec-
tor. Two substructures are then matched if
their selectors satisfy an equality predicate,
while the importance of the match is deter-
mined by a probability kernel on local dis-
tributions fitted on the substructures. Under
reasonable assumptions, a WDK can be com-
puted efficiently and can avoid combinatorial
explosion of the feature space. We report ex-
perimental evidence that the proposed kernel
is highly competitive with respect to more
complex state-of-the-art methods on a set of
problems in bioinformatics.

1. Introduction

Statistical learning in structured and relational do-
mains is rapidly becoming one of the central areas of
machine learning, boosted by the increasing awareness
that the traditional propositional setting lacks expres-
siveness for modeling many domains of interest. In
this paper we focus on supervised learning of discrete
data structures driven by several practical problems in
bioinformatics that involve classification of sequences
(e.g. protein sub-cellular localization) and graphs (e.g.
prediction of toxicity or biological activity of chemical
compounds).

Starting from the seminal work of Haussler (1999), sev-
eral researchers have defined convolution and other de-
composition kernels on various types of discrete data
structures such as sequences (Lodhi et al., 2002; Leslie
et al., 2002; Cortes et al., 2004), trees (Collins & Duffy,
2001), and annotated graphs (Gärtner, 2003). Thanks
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to its generality, decomposition is an attractive and
flexible approach for constructing similarity on struc-
tured objects based on the similarity of smaller parts.
Still, defining a good kernel for practical purposes may
be challenging when prior knowledge about relevant
features is not sufficient.

At one extreme, it may be desirable to take all possible
subparts into account. However, in so doing, the di-
mension of the feature space associated with the kernel
can become too large due to the combinatorial growth
of the number of distinct subparts with their size.
Arguably, unless an extensive use of prior knowledge
guides the selection of relevant parts — e.g. as done
by Cumby and Roth (2003) using description logics
— most dimensions in the feature space will be poorly
correlated with the target function and the explosion of
features may adversely affect generalization in spite of
using large margin classifiers (Ben-David et al., 2002).
As observed by many researchers, the problem also
manifests itself in the form of a Gram matrix having
large diagonal values. Common sense remedies include
down-weighting the contribution of larger fragments
(Collins & Duffy, 2001) or limiting their size a pri-
ori, although in so doing, we could miss some relevant
features. A remedy based on kernel transformations
is described by Schölkopf et al. (2002). An alterna-
tive promising direction that can avoid dimensional-
ity explosion is the generation of relevant features via
mining frequent substructures. Methods of this fam-
ily have been successfully applied to the classification
of chemical compounds (Kramer et al., 2001; Desh-
pande et al., 2003). Other researchers have found that
kernels based on paths can also be very effective in
chemical domains. Graph kernels based on counting
label paths produced by random walks have been pro-
posed by Kashima et al. (2003) and later extended
by Mahé et al. (2004) to include contextual informa-
tion. Horváth et al. (2004) have proposed counting
the number of common cyclic and tree patterns in a
graph.

At the opposite extreme, one might flatten discrete
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structures into propositional representations, reducing
the number of features at the (possibly severe) cost of
losing valuable structural information. One example
of this extreme is the use of amino acid composition
for protein sequence classification (Hua & Sun, 2001).
In this paper, we show how between the two above
extreme approaches (taking subparts and flattening)
it is possible to explore a useful class of kernels that
perform well in practice for both protein sequence and
molecule graph classification. A weighted decomposi-
tion kernel (WDK) focuses on relatively small parts of
a structure, called selectors, that are matched accord-
ing to an equality predicate. The importance of the
match is then weighted by a factor that depends on
the similarity of the context in which the matched se-
lectors occur. In order to introduce a “soft” similarity
notion on contexts, we extract attribute frequencies in
each context and then apply a kernel on distributions.
Suitable options include histogram intersection kernels
(Odone et al., 2005) and probability product kernels
(Jebara et al., 2004).

The remainder of the paper is organized as follows. In
Section 2 we review Haussler’s decomposition kernels
giving a slightly more flexible definition. In Section 3
we introduce a general class of weighted decomposition
kernels and in Section 4 we discuss efficient algorithmic
implementations. Finally, in Section 5 we validate the
method on several problems in bioinformatics, involv-
ing classification of protein sequences and classification
of molecules represented as graphs.

2. Decomposition Kernels

We start from some of the definitions and results in
(Haussler, 1999) (see also Shawe-Taylor and Cristian-
ini (2004)). An R-decomposition structure on a set

X is a triple R = 〈 ~X,R,~k〉 where ~X = (X1, . . . ,XD)
is a D–tuple of non–empty subsets of X, R is a fi-
nite parthood relation on X1 × · · · × XD × X, and
~k = (k1, . . . , kD) is a D–tuple of positive definite ker-
nel functions kd : Xd × Xd 7→ IR. R(~x, x) is true iff ~x
is a tuple of parts for x — i.e. ~x is a decomposition
of x. For any x ∈ X, let R−1(x) = {~x ∈ ~X : R(~x, x)}
denote the multiset of all possible decompositions of x.
A decomposition kernel is then defined as the multiset
kernel between the decompositions:

KR(x, x′)
.
=

∑

~x∈R−1(x)

∑

~x′∈R−1(x′)

κ(~x, ~x′) (1)

where we adopt the convention that summations over
the elements of a multiset take into account their mul-
tiplicity. To compute κ(~x, ~x′), kernels on parts are
combined by means of operators that need to be closed
with respect to kernel positive definiteness. Haussler

(1999) proved that combinations based on tensor prod-
uct (R-convolution kernels) and direct sum are positive
definite.

Since decomposition kernels form a rather vast class,
the relation R needs to be carefully tuned to differ-
ent applications in order to characterize a suitable
kernel. One commonly used family consists of all-
substructures kernels, which count the number of com-
mon substructures in two decomposable objects. In
this case D = 1 and R = 〈X,R, δ〉, where R(x1, x) if
x1 is a substructure of x and δ is the exact matching
kernel : δ(x1, x

′
1) = 1 if x1 = x′

1 and 0 otherwise. Note
that in general, computing the equality predicate be-
tween x1 and x′

1 may not be computationally efficient
as it might require solving a subgraph isomorphism
problem (Gärtner et al., 2003). Known kernels that
can be reduced to the above form include the spec-
trum kernel on strings (Leslie et al., 2002), the basic
version (with no down-weighting) of co-rooted subtree
kernel on trees (Collins & Duffy, 2001) and kernels
counting common walks on graphs (Gärtner, 2003).

3. Weighted Decomposition Kernels

3.1. Data Types

We focus on instances from a wide class of annotated
graphs. This includes sequences and trees as spe-
cial cases. No particular restriction needs to be as-
sumed about graph topologies. In particular, we al-
low the presence of cycles and we can use directed
or undirected edges and ordered, unordered or posi-
tional adjacency lists. For simplicity, we assume that
labels associated with vertices and edges are tuples
of atomic attributes. Attributes are organized into
classes and can be instantiated for each vertex or edge.
So, for example, in a chemical domain we may in-
troduce the class AtomType for vertex attributes and
write AtomType(3) = C to indicate that vertex 3 in a
graph molecule is a carbon atom. In the following we
will denote by ξ a generic vertex attribute class and
by ξ(v) its value at vertex v. Similarly, we denote by
ξ(u, v) the value of an edge attribute of class ξ at edge
(u, v). Finally, if x is a graph, we denote by ξ(x) the
value multiset associated with attribute ξ. In the case
of vertex attributes, ξ(x) = {ξ(v) : v ∈ V (x)} where
V (x) is the vertex set of x. Similarly, in the case of
edge attributes, ξ(x) = {ξ(u, v) : (u, v) ∈ E(x)} where
E(x) is the edge set of x.

3.2. Graph Probability Distribution Kernels

In a probability product kernel, a simple generative
model is fitted to each example and the kernel between
two examples is evaluated by integrating the product
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of the two corresponding distributions (Jebara et al.,
2004). In this paper we use a discrete version of these
kernels, based on multinomial frequencies. Given a
graph x and an attribute ξi, let pi(j) be the observed
frequency of value j in ξi(x). A first type of kernel is
defined as

ki(x, x′) =

mi∑

j=1

pi(j)
ρp′i(j)

ρ (2)

where mi is the number of distinct values for ξi. Set-
ting ρ = 1/2 we obtain a discrete version of the Bhat-
tacharyya kernel. As an interesting alternative, we
may use histogram intersection kernels (Odone et al.,
2005) defined as:

ki(x, x′) =

mi∑

j=1

min{pi(j), p
′
i(j)}. (3)

The contributions of multiple attributes can be
summed or multiplied, yielding kernels of the form:

κ(x, x′) =
n∏

i=1

(1 + ki(x, x′)) (4)

κ(x, x′) =

n∑

i=1

ki(x, x′) (5)

where ki(x, x′) is one of Eq. (2) or Eq. (3). In the
case of continuous attributes (no experimentation re-
ported in the current paper) one could fit appropriate
continuous distributions and apply kernels defined in
(Jebara et al., 2004).

3.3. General Form

A weighted decomposition kernel (WDK) is character-
ized by the following decomposition structure:

R = 〈 ~X,R, (δ, κ1, . . . , κD)〉

where ~X = (S,Z1, . . . , ZD), R(s, z1, . . . , zD, x) is true
iff s ∈ S is a subgraph of x called the selector and
~z = (z1, . . . , zD) ∈ Z1 × · · · × ZD is a tuple of sub-
graphs of x called the contexts of occurrence of s in x
(precise definitions of s and ~z are domain-dependent
as shown in Section 3.4 and 3.5). In order to ensure an
efficient computation of the kernel, some restrictions
have to be placed on the sizes of the above entities.
First we assume that |R−1(x)| = O(|V (x)| + |E(x)|),
i.e. the number of ways a graph can be decomposed
grows at most linearly with its size. Second, we as-
sume that selectors have constant size with respect to
x, i.e. R(s, ~z, x) ⇒ |V (s)|+ |E(s)| = O(1). The defini-
tion is completed by the kernels on parts: δ is an exact
matching kernel on S×S and κd is a graph probability

distribution kernel on Zd ×Zd. This setting results in
the following general form of the kernel:

K(x, x′) =
∑

(s, ~z) ∈ R−1(x)

(s′, ~z′) ∈ R−1(x′)

δ(s, s′)

D∑

d=1

κd(zd, z
′
d) (6)

where the direct sum between kernels over parts κd
can be replaced by the tensor product. Compared to
kernels that simply count the number of substructures,
the above function weights different matches between
selectors according to contextual information. The
kernel can be afterwards normalized. In the following
subsections we specialize this general form to practical
cases of interest.

3.4. A WDK for Biological Sequences

Biological sequences are finite length strings on a finite
alphabet Σ (for example Σ consists of the 20 amino
acid letters in the case of proteins) and therefore X =
Σ∗. Given a string x ∈ Σ∗, two integers e ≥ 0 and
e ≤ t ≤ |x| − e, let x(t, e) denote the substring of
x spanning string positions from t − e to t + e. The
simplest version of WDK is obtained by choosing D =
1 and a relation R depending on two integers r ≥ 0
(the selector radius) and l ≥ r (the context radius)
defined as R = {(s, z, x) : x ∈ Σ∗, s = x(t, r), z =
x(t, l), l ≤ t ≤ |x| − l}. The kernel is then defined as

K(x, x′)=

|x|−l∑

t=l

|x′|−l∑

τ=l

δ(x(t, r), x′(τ, r))κ(x(t, l), x′(τ, l)).

Intuitively, when applied to protein sequences, this
kernel computes the number of common (2r +1)-mers
weighting matching pairs by the similarity between the
amino acid composition of their environments — mea-
sured, for example, by one of the probability distribu-
tion kernels as defined in Eq. (4) or Eq. (5). Of course
if κ(·, ·) ≡ 1, then this WDK reduces to the spectrum
kernel. Note that although the above equation seems
to imply a complexity of O(|x||x′|), more efficient im-
plementations are possible (see Section 4 ).

3.5. A WDK for Molecules

A molecule is naturally represented by an undirected
graph x where vertices are atoms and edges are co-
valent bonds. Vertices are annotated with attributes
such as atom type, atom charge, membership to spe-
cific functional groups (i.e. whether the atom is part
of a carbonyl, metil, alcohol or other group in the
molecule) and edges are annotated with attributes
such as bond type. Given a vertex v and an integer
l ≥ 0, we denote by x(v, l) the subgraph of x induced
by the set of vertices which are reachable from v by
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a path of length at most l and by the set of all edges
that have at least one end in the vertex set of x(v, l).
Also let x(v) be the node v of x.

The first WDK we propose is obtained by choosing
D = 1 and a relation R that depends on an integer
l ≥ 0 (context radius) defined as R = {(s, z, x) : x ∈
X, s = x(v), z = x(v, l), v ∈ V (x)}. The kernel is
defined as

K(x, x′) =
∑

v ∈ V (x)
v′ ∈ V (x′)

δ(x(v), x′(v′)) · κ(x(v, l), x′(v′, l)). (7)

Note that selectors consist of single vertices, allowing
us to compute δ in constant time. As discussed in Sec-
tion 4, other options that still preserve efficiency may
be available. In the second WDK we set D = 2 and use
two types of contexts, z1(v, l) = x(v, l) and its graph
complement denoted by z2(v, l). Probability ker-
nels over contexts can be combined under direct sum
obtaining κ((~z, v), (~z′, v′)) = κ1(z1(v, l), z′1(v

′, l)) +
κ2(z2(v, l), z′2(v

′, l)). Eq. (6) finally becomes

K(x, x′) =
∑

v ∈ V (x)
v′ ∈ V (x′)

δ(x(v), x′(v′)) · κ((~z, v), (~z′, v′)). (8)

4. Algorithms and Complexity

The computational efficiency of a decomposition ker-
nel depends largely on the cost of constructing and
matching substructures. In particular, exact match-
ing of substructures might lead to intractability when
dealing with general graphs (Gärtner et al., 2003).
This problem is avoided in WDK. Selectors require ex-
act matching but consist of small substructures that
can be reasonably constructed and matched in O(1).
Examples of acceptable selectors include: short sub-
strings for sequences, tuples formed by vertices and
the ordered list of their children for trees (e.g. produc-
tion rules in the case of parse trees) and single vertices
for non-ordered graphs. Contexts may be large but in
this case efficiency is achieved because attribute fre-
quencies (histograms) and not subgraphs are matched.
Efficient procedures can be devised for calculating the
kernel under the assumption that graphs are labeled by
categorical attributes. Before kernel calculation, each
instance is pre-processed to construct a lexicographi-
cally sorted index that associates context histograms
to selectors. The cost of this step is O(m log m) + Tc

for each instance, where m = |R−1(x)| and Tc is the
time for calculating all context histograms. The outer
summation over selectors in Eq. (6) is then computed
by scanning the two ordered indices of x and x′. This
strategy leads to a complexity reduction of the ker-
nel computation between two instances of the same

size ranging from O(m2) up to O(m), depending on
indexing sparseness1. We now briefly discuss algorith-
mic ideas for computing label histograms efficiently
when contexts are subgraphs formed by all vertices at
bounded distance from the selector (this is the case
for example in the kernels for biological sequences and
for molecules proposed in Sections 3.4 and 3.5). In
the case of sequences, context histograms can be up-
dated in O(1) moving along the sequence e.g. from
left to right. Therefore, the time for constructing all
context histograms is Tc = O(m + l), where l is the
size of each context and m in this case the length of
the sequence. When data is organized as rooted trees,
it is possible to use a vector of histograms associated
with each node to store information on statistics at
increasing distances. An algorithm can compute the
histogram of the sub-tree dominated by a node in a
recursive fashion, partially exploiting the histograms
of its children. Such an algorithm can clearly con-
struct all context histograms with complexity O(m),
with a linear increase in space complexity. Context
histograms for DAGs can efficiently be computed fol-
lowing the same procedure as in the tree case (once
DAGs have been topologically sorted). When a vertex
has among its descendants two vertices that have a
common neighbor q, care has to be taken to count the
contribution of q only once. In addition to a vector
of histograms, we need to associate a hash table for
each vertex in order to efficiently access those descen-
dant vertices with multiple incident edges and subtract
their multiple contribution. The final complexity is
bounded by O(V + E). For the general case of undi-
rected cyclic graphs directly, computing the histogram
visiting in breadth-first the neighborhood of each ver-
tex achieves a complexity bounded by O(V 2 + V E).

5. Experimental Results

To demonstrate the effectiveness and versatility of our
approach, we report experimental results on two pro-
tein classification tasks and two chemical compound
classification tasks. In the experimentation, classifica-
tion was performed using the Support Vector Machine
(SVM) algorithm.

5.1. Protein Subcellular Localization

The protein subcellular localization task consists of
predicting the cell compartment in which the mature
protein will reside. An accurate localization predic-
tion is considered a useful step towards understanding

1The best case is when each bucket contains a single
context histogram, the worst when a single bucket contains
all of them.



Weighted Decomposition Kernels

Table 1. Leave one out performance on the SubLoc data set (http://www.bioinfo.tsinghua.edu.cn/SubLoc/). The spec-
trum kernel is based on 3-mers and C = 10. For the WDK, contexts width was 15 residues and C = 10.

Cytoplasmic Extra–Cellular Mitochondrial Nuclear

Method Acc Pre Rec gAv MCC Pre Rec gAv MCC Pre Rec gAv MCC Pre Rec gAv MCC

SubLoc 79.4 72.6 76.6 .74 .64 81.2 79.7 .80 .77 70.8 57.3 .63 .58 85.2 87.4 .86 .74

Spectrum3 84.9 80.4 83.3 .81 .74 90.6 85.5 .88 .86 75.8 61.4 .68 .63 88.3 92.6 .90 .82

WDK 87.9 82.6 87.9 .85 .79 96.9 87.7 .92 .91 89.7 62.3 .74 .71 88.7 95.5 .92 .85

Table 2. Test set performance on the SwissProt data set defined by Nair and Rost (2003)
(http://cubic.bioc.columbia.edu/results/2003/localization/). The spectrum kernel is based on 3-mers and C = 5.
For the WDK, contexts width was 15 residues and C = 5.

Cytoplasmic Extra–Cellular Mitochondrial Nuclear

Method Acc Pre Rec gAv MCC Pre Rec gAv MCC Pre Rec gAv MCC Pre Rec gAv MCC

LOCNet 64.2 54.0 56.0 .54 - 76.0 86.0 .81 - 45.0 53.0 .49 - 71.0 73.0 .72 -

Spectrum3 74.1 69.7 68.8 .69 .57 78.7 80.6 .79 .72 65.3 53.3 .59 .54 76.5 80.8 .78 .66

WDK 78.0 71.4 72.9 .72 .60 85.7 87.1 .86 .81 78.9 50.0 .62 .59 77.8 85.3 .81 .70

protein function, since proteins belonging to the same
compartment could cooperate towards a common func-
tion. We report comparative results on two data sets
previously studied in the literature. The first data set
was prepared by Hua and Sun (2001) and consists of
2,427 eukaryotic sequences. The second data set was
prepared by Nair and Rost (2003) and consists of 1,461
(train) and 512 (test) SwissProt proteins. In both
cases proteins are grouped in four classes: cytoplasmic,
extra-cellular, mitochondrial and nuclear. We cast the
multiclass problem into four one-vs-all binary classifi-
cation problems. We compare WDK against SubLoc
(Hua & Sun, 2001) (an SVM predictor based on an
amino acid composition kernel) and against LOCNet
(Nair & Rost, 2003) (a more sophisticated connection-
ist approach that employs predicted secondary struc-
ture and solvent accessibility as additional inputs). In
addition we compared results with our implementation
of the spectrum kernel (Leslie et al., 2002). Perfor-
mance was measured for each class in terms of pre-
cision, recall, geometric average, Matthew correlation
coefficient (between targets and predictions) and over-
all 4-class accuracy. Kernel parameters have been opti-
mized using cross-validation, obtaining context radius
l = 7 for the WDK, 3-mers for both the spectrum
kernel and WDK selector, and regularization param-
eter C = 10 for both kernels. The WDK is able to
exploit larger amino acid subsequences in the form of
context, while using large selectors (or large k-mers
for the spectrum kernel) leads to worse generalization
due to sparseness. In Table 1, we report leave one
out classification results obtained with our implemen-
tation of SubLoc, the spectrum kernel and the WDK.
As specified in Hua and Sun (2001), the SubLoc pre-

dictor was trained using an RBF kernel with γ = 16
and C = 500. In Table 2 we compare the performance
of spectrum kernel, WDK and LOCNet (Nair & Rost,
2003) on the test set. The spectrum kernel consistently
outperforms SubLoc (showing that features other than
the overall amino acid composition are useful for this
prediction task) and is also highly competitive against
LOCNet. In all cases, WDK results show that fur-
ther improvement over the spectrum kernel is possible
by exploiting context information around 3-mers. We
conjecture that WDK is capturing some short sorting
signals in the protein sequence.

5.2. Protein Family Classification

Remote protein homology detection is the task to find
homologies between proteins that are in the same su-
perfamily but not necessarily in the same family. The
superfamily classification is useful to annotate new
unknown proteins with structural and functional fea-
tures from similar known proteins. We tested WDK
on the sample of the Structural Classification of Pro-
teins (SCOP) dataset used in the experimental setup
by Jaakkola et al. (2000) and Leslie et al. (2002). We
followed Jaakkola et al. (2000) simulating the remote
homology task by holding out all members of a tar-
get family from a given superfamily. The holding out
family sequences were positive test examples, while re-
maining families in the superfamily were positive train-
ing examples; negative training and test examples were
chosen from outside the target family fold. Classifica-
tion performance was evaluated measuring RFP100%,
RFP50% (rates of false positives at recall 1 and 0.5 re-
spectively) and ROC50 (the area under the ROC span-
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Figure 1. Remote Protein Homologies: family by family comparison of the WDK and the spectrum kernel. The coordinates
of each point are the RFP at 100% coverage (a), at 50% coverage (b) and the ROC50 scores (c) for one SCOP family,
obtained using the WDK and spectrum kernel. Note that the better performance is under the diagonal in (a) and (b),
while is over in (c).
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Figure 2. Remote Protein Homologies: comparison of the WDK and spectrum kernel. The graphs plot the total number
of families for which a given method is within a RFP at 100% coverage threshold (a), at 50% coverage threshold (b) and
exceeds an ROC50 score threshold (c).

ning the first 50 false positive). Parameters for WDK
have been chosen to be: selector radius r = 1, con-
text radius l = 7 residues and regularization param-
eter C = 1. The spectrum kernel is based on 3-mers
and C = 1. Sequences with more than one unknown
residual are discarded. Results for all 33 SCOP fami-
lies obtained with our implementation of the spectrum
kernel and the WDK are reported in Figures 1–2. We
note that WDK performs favorably against the spec-
trum kernel on relatively hard family to recognize, i.e.
families with low ROC50 or high RFP, but also on
the easy ones, while it is comparable on families lay-
ing in an intermediate region. The relative error re-
duction obtained by the WDK when measuring the
ROC50, RFP100%, RFP50% averaged over all 33 fami-
lies is 3.2%, 3.4% and 0.8% respectively.

5.3. HIV Dataset

The HIV dataset contains 42, 687 compounds
evaluated for evidence of anti–HIV activity by
DTP AIDS Antiviral Screen of the National Can-
cer Institute, 422 of which are confirmed active
(CA), 1081 are moderately active (CM) and

41184 are confirmed inactive. It is available at
http://dtp.nci.nih.gov/docs/aids/aids data.html.
WDK was tested on three binary classification prob-
lems, following the experimental setup of Deshpande
et al. (2003): CA vs. CM , CA vs. CI, and CA+CM
vs. CI. Classification performance was measured
by the mean and standard deviation of the ROC
area on a five folds cross validation setup in which
the original class distribution was preserved in each
fold. We used as vertex attribute the atom type
and as edge attribute both bond type and triplets
encoding the bond type and the two bonded atoms
types. The regularization parameter C = 100 was
optimized on a four folds cross validation set. The
misclassification cost β for positive examples was
increased to match the ratio n−/n+ between positive
and negative examples. In Table 3 we report results
for the CA vs. CM task at increasing values for
the context radius. In addition to the standard
WDK with a single context Eq. (7) we tested the
WDK using subgraph complements Eq. (8). We
note that performance improves with larger context
radii and, consistently, is better when using subgraph
complement. In the subsequent experiments, reported
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Table 3. HIV dataset: CA vs. CM task. Effect of varying
the context radius l and the absence D = 1 or presence
D = 2 of graph complement.

D l = 1 l = 2 l = 3 l = 4 l = 5

1 80.1±0.8 81.8±0.9 81.6±0.8 82.0±1.5 81.6±1.5

2 82.2±1.2 83.5±0.7 83.8±1.7 84.2±1.2 83.8±0.8

Table 4. HIV dataset. FSG: best results (optimized sup-
port and β = n−/n+) reported by Deshpande et al.
(2003) using topological features; CPK: results reported
by Horváth et al. (2004) using β = n−/n+; CPK∗ same,
using an optimized β∗; WDK: β = n−/n+.

CA vs. CM CA+CM vs. CI CA vs. CI

FSG 79.2 79.4 90.8

CPK 82.7±1.3 80.1±1.7 92.8±1.0

CPK
∗

82.9±1.2 80.1±1.7 93.4±1.1

WDK 84.2±1.2 81.7±1.8 94.0±1.5

in Table 4, we used graph complement and context
radius l = 4. For comparison, Table 4 shows the best
results reported on this data set by Deshpande et al.
(2003) and by Horváth et al. (2004) (also measured
by five-fold cross validation but on a different split).
Note however that we compare our results on a fair
base, i.e. against Deshpande et al. (2003) without
additional geometrical features and against Horváth
et al. (2004) without the composition with gaussian
kernel.

5.4. Predictive Toxicology Challenge (PTC)

The PTC is a classification problem over the car-
cinogenicity properties of chemical compounds on
mice and rats. To test WDK classification per-
formance on this task we used the U.S. National
Institute for Environment Health Studies dataset
available at http://www.predictive-toxicology.org/ptc.
The dataset (Helma et al., 2001) lists the bioassays
of 417 chemical compounds for four type of rodents:
male mice (MM), female mice (FM), male rats (MR)
and female rats (FR), which give rise to four distinct
and independent classification problems. Each com-
pound is classified as clear evidence (CE), positive (P),
some evidence (SE), negative (N), no evidence (NE),
equivocal (E), equivocal evidence (EE) and inadequate
study (IS). We followed the experimental design of
Deshpande et al. (2003), ignoring E, EE, IS classes,
grouping CE, P, SE in the positive class and N, NE

in the negative one. In addition to the atom type at-
tribute we enriched vertex information with a discrete
attribute on atom charge (taking values in {−1, 0, 1})
and functional group membership, that is, whether the
atom is part of one among 28 different group types
such as carbonyl, ester, anhydrid, ketone, alcohol, etc.
Edge attributes comprise both bond type and triplets
encoding the bond type and the two bonded atoms
types. The regularization parameter C was optimized
on a four folds cross validation for each one of the
four classification problems. Both in the optimiza-
tion and training phase the misclassification cost for
positive examples was increased to match the positive
to negative example ratio. Classification performance
was evaluated measuring the mean and standard devi-
ation of the area under the ROC curve on a five folds
cross validation preserving the original class distribu-
tion on each fold. We performed two experiments to
identify the effect of different parameters over classifi-
cation performance. In the first experiment we let con-
text radius l vary and we contrast single context WDK
against WDK with additional complementary context.
Results reported in Table 5 show that the presence of
the graph complement (D = 2) increases performance
for MR and FR, while a larger context radius is useful
for FM and FR. In the second experiment we com-

Table 5. PTC: effect of varying the context radius l and the
absence D = 1 or presence D = 2 of graph complement.

D = 1 l = 1 l = 2 l = 3

MM 70.5±4.3 70.0±5.5 69.9±6.3

FM 67.4±6.9 68.1±9.7 69.1±5.8

MR 63.8±6.4 67.8±7.2 68.4±6.3

FR 61.5±8.1 61.3±7.4 60.4±5.7

D = 2 l = 1 l = 2 l = 3

MM 68.1±6.2 68.1±6.2 68.1±5.8

FM 65.4±7.6 65.1±8.8 66.9±8.1

MR 69.7±7.2 69.1±7.3 67.7±6.3

FR 62.2±4.8 62.2±5.6 64.9±5.1

pared four WDKs obtanied combining tensor product,
direct sum, Bhattacharyya and histogram intersection
kernels. Results indicate that the direct sum version
generally outperforms the tensor product kernel. Our
conjecture is that simpler problems benefit from the
smaller feature space generated by direct sum version,
while more complex problems can be best solved in
a larger feature space induced by the tensor product
kernel. We finally compared our result to the FSG
(Deshpande et al., 2003) and the extended marginal-
ized graph kernel (EMGK) (Mahé et al., 2004). The
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best results obtained by the three methods are compa-
rable. The WDK defined by Eq. (7) and (8) has the
advantage of not requiring a computationally expen-
sive graph pre-processing phase compared to FSG. In
addition, it exhibits a stable behavior with respect to
model parameters, as opposed to EMGK.

6. Conclusions

We introduced the weighted decomposition kernels, a
computationally efficient and general family of kernels
on decomposable objects. We report experimental ev-
idence showing that the proposed kernel performs re-
markably well with respect to more complex and com-
putationally demanding methods on a number of dif-
ferent bioinformatics problems ranging from protein
sequences to molecule graphs classification. Future
working directions include the extension of the pro-
posed approach to non trivial selectors (using for ex-
ample frequent subgraph mining algorithms) and to
probability distributions over subgraphs occurrences.
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