
Comparing Convolution Kernels and Recursive Neural Networks for
Learning Preferences on Structured Data

Sauro Menchetti
�

Fabrizio Costa
�

Paolo Frasconi
�

Massimiliano Pontil
�

�
Department of Systems and Computer Science,

Università di Firenze, Italy�
menchett, costa, paolo � @dsi.unifi.it

http://www.dsi.unifi.it/neural/

�
Department of Computer Science,
University College London, UK
m.pontil@cs.ucl.ac.uk

Abstract

Convolution kernels and recursive neural networks
(RNN) are both suitable approaches for supervised learn-
ing when the input portion of an instance is a discrete
structure like a tree or a graph. We report about an empir-
ical comparison between the two architectures in a large
scale preference learning problem related to natural lan-
guage processing, where instances are candidate incre-
mental parse trees. We found that kernels never outper-
form RNNs, even when a limited number of examples is
employed for learning. We argue that convolution ker-
nels may lead to feature space representations that are
too sparse and too general because not focused on the
specific learning task. The adaptive encoding mechanism
in RNNs in this case allows us to obtain better prediction
accuracy at smaller computational cost.

Keywords: Convolution Kernels, Recursive Neural Net-
works, Data Structures, Preference Models, Machine
Learning.

1. Introduction

Supervised learning algorithms on discrete structures
such as strings, trees, and graphs are very often derived
from vector based methods, using a function composition
approach. In facts, if we exclude symbolic learning algo-
rithms such as inductive logic programming, any method
that learns classification, regression, or preference func-
tions from variable-size discrete structures must first con-
vert structures into a vector space and subsequently apply
more “traditional” learning tools to the resulting vectors.

The mapping from discrete structures to vector spaces
can be realized in alternative ways. One possible ap-
proach is to employ a kernel function, as suggested for
example by Haussler [8] or by Jaakkola and Haussler [9].
Similarly, recursive neural networks (RNN) [5] can solve
the supervised learning problem when the input portion
of the data is a labeled directed acyclic graph (DAG). The

two methods have different potential advantages and dis-
advantages.

The use of kernels allows us to apply large margin clas-
sification or regression methods, such as support vector
machines (SVM) [14] or the voting perceptron (VP) al-
gorithm [6]. These methods have a solid theoretical foun-
dation and may attain good generalization even with rel-
atively small data sets by searching the solution to the
learning problem in an appropriately small hypothesis
space. When using kernels, the feature space represen-
tation of the input data structure is accessed implicitly
and the associated feature space may have very high di-
mensionality, perhaps even infinite. Separating data in
very high dimensional spaces does not necessarily lead
to overfitting, since large margin methods such as SVM
scale up with the ratio between the sphere containing the
data points and the distance between the separating hy-
perplane and the closest training examples. Another ad-
vantage of many kernel-based algorithms is that, unlike
neural networks, they typically minimize a convex func-
tional, thus avoiding the intractable problem of dealing
with local minima. However, this problem is only par-
tially avoided. In fact, the kernel function usually needs
to be tuned/adapted to the problem at hand, a problem
which cannot in general be cast as a non-convex optimiza-
tion problem. The typical example is tuning the variance
of a gaussian kernel. Learning the kernel function is still
an open problem, particularly in the case of discrete struc-
tures. When using convolution kernels, for example, the
mapping from discrete structures to the feature space is
fixed before learning by the choice of the kernel function.
A non-optimally chosen kernel may lead to very sparse
representations and outweigh the benefits of the ‘subse-
quent’ large margin methods.

On the other hand, a RNN operates by composing two
adaptive functions. First, a discrete structure is recur-
sively mapped into a low-dimension real vector by a func-
tion � . Second, the output is computed by a function �
(also implemented by a feedforward neural network) that
takes as argument the vector representation computed in

the first step. Thus, the role played by � in RNNs is very
similar to the role played by the kernel function in the case
of large margin classifiers, but it is an adaptive function,
leading to ‘feature space’ representations that are focused
on the particular learning task.

In this paper, we compare the two above approaches
in a large scale learning problem that occurs in compu-
tational linguistics. The task consists of predicting incre-
mental fragments of parse trees extracted from a treebank
[4]. The learning task is a preference problem that con-
sists of selecting the best alternative tree in a forest of
competitors. We show how to perform preference learn-
ing in this highly structured domain using both learning
methods (RNN and VP with convolution kernels) and
we enlighten some interesting connections between the
two approaches. Finally, we report several experimental
comparisons, showing that in spite of their theoretical ap-
peal, convolution kernels never achieve significantly bet-
ter generalization compared to RNNs, even when smaller
data sets are employed for training.

2. Convolution Kernels

An effective method to convert structures into a vector
representation, in order to apply traditional learning tools,
is to define problem specific kernel functions. Collins and
Duffy [2] proposes a convolutional kernel for parse trees
generated by a natural language parser. Let ��������	� a
mapping from discrete structured tree space � to an high
dimensional Hilbert space � that represents the feature
space. Let ��
� ������������ be the set of all the tree frag-
ments [1], where � � is the � -th tree fragment with the
only constraint that a production rule can not be divided
into further subparts. Then each parse tree � is represented
by an � -dimensional vector ��������
 �!� � �"���#�������� of tree
fragments: the � -th feature value � � �"�$� counts the oc-
currence number of the � -th tree fragment �%� in � . This
representation can be seen as a bag of subtrees repre-
sentation: the object is mapped into a feature vector of
which each component counts the occurrence number of
any structure. If we define the inner product between two
trees ���'&(�#)+*�� by a kernel ,-������&(�#).�/
0���"�.�.��1"���"�#)'� and
if we find a solution to compute it efficiently [2], there is
no need to compute explicitly the feature vectors ���"���$�
and ���"�) � . The main idea is to compute the kernel on
a tree as a function of the kernel evaluated on subtrees of
the original tree using a dynamic programming algorithm.
The computation of the kernel is recursive: the kernel is
defined for fundamental structures and more complex ob-
jects are split into simple subparts.

A problem of this kernel is its dependency on the num-
ber of tree nodes: the large is the number of nodes, the
bigger the kernel value will be. It can be overcome by
normalizing the kernel value. An another drawback is that
the kernel value distribution is very peacked. Since the
number of larger fragments is greater than the number of
smaller fragments, we can limit the height of the subtrees

we use to compute the kernel. Otherwise we can weight
all the fragments by a coefficient which decays exponen-
tially with their size, so larger fragments have a smaller
coefficient than the smaller ones:

,32��"����&(�#).�4
 �5�����76
size 8 �9�:�"�.�$�;�9�<�"�$)�� (1)

where size � is the number of productions in the � -th frag-
ment and =?> 6A@0B .

Voted Perceptron

Kernels can be used in conjunction with several learning
algorithms. SVM is employed when we are interested to
find a maximal-margin solution with a good generaliza-
tion performance, since it is theoretically well-founded
and there are guarantees on its convergence to a unique
global optimum. Unfortunately SVM is computationally
very intensive and, when the number of training examples
is very large, it becomes not applicable.

Voted Perceptron (VP) [6] is an online algorithm for
binary classification of � -dimensional instances based on
Rosenblatt’s perceptron algorithm. It is much simpler to
implement and more efficient in terms of computational
time in respect to SVM classifiers, though there are no
convergence guarantees. On the other hand, as experi-
mentally shown by [6], VP and maximal-margin classi-
fiers performance results are very similar. The training
procedure uses a labeled training set CD
E�F��GIH(&;J%HK�#��LHM��� ,
where GNHO*P� and J%HQ*R�!S B &�T B � . At each step U ,
VP classifies a training example G H using the current vec-
tor of weights VXW . If the predicted label YJ H is different
from the true label J H , then the vector VZW is updated andG H added to a list [of incorrectly classified examples,
else the number \.W of training examples correctly clas-
sified by V W is increased. Let �]�4�^��_� be a func-
tion that maps training examples into high dimensional
Hilbert space and let ,`�a��bc�d�� e f be a Mercer
kernel, ,c��GgH;&;Gih��j
k���KGIHK�41�����G�h�� . VP outputs a set ofl

weighted perceptrons mn
]�o��V W &p\ W �q�'rW ��� or, equiva-
lently, a list [s
]�o�KGNtvuF&p\ W �q� r W ��� of incorrectly classified
examples. The class of a new instance is predicted asYJw
 sign x �g��GI�vy where

�g��GN�z
 r5
W ��� \ W!{ x V W 1�����GI�vy

 r5
W ��� \.W { x

W5
h;��� J t}| ,-�KG t}| &;GN�~y (2)

and { �Fe f����e f is the identity function or the sign func-
tion. The worst case complexity of the VP training algo-
rithm is �������)$� � , where � is the epoch number, � is
the training set element number and � is the cost to com-
pute the kernel [6].

3. Recursive Neural Networks

Recursive neural networks (RNNs) are a generaliza-
tion of neural networks (NNs) capable of processing
structured data such as directed ordered acyclic graphs
(DOAG) [5] where a discrete or real label is associated
with each vertex. Recently RNNs have been used to
process linguistic data such as syntactic trees in order
to model psycholinguistic preferences in the incremen-
tal parsing process [4, 13]. The key idea is to replicate
a NN for each node of the tree and consider as input
to the network both the atomic information represented
by the label and the structured information derived by
the output of all the networks instantiated for each child
node. The process of replicating a NN is called network
unfolding and as a result of this procedure we obtain a
large network having shared weights and whose topol-
ogy matches that of the input graph. At each node the
NN outputs a vector encoding of the whole subtree dom-
inated by that node. More formally, on a labeled ordered� -ary tree with nodes � we denote with ch x �%y the ordered� -tuple of vertices whose elements are � ’s children and
with e9��� � the discrete label attached to vertex � . Data
processing takes place in recursive fashion, traversing the
tree in post-order, using a transition function � such thatG ��� �4
 �g��G � ch x �%y"�#&pe����F�;� where G ���F��*�e f � denotes the
state vector associated with node � and G � ch x �%y"� * e f L�� �
is a vector obtained by concatenating the components of
the state vectors contained in � ’s children. The transition
function �A� � b?e f L�� � �� e f � maps states at � ’s children
and the label at � into the state vector at � . A frontier stateGQ
0= is used as the base step of recursion.

We use a feed-forward neural network to model the
transition function � according to the scheme:� h ��� �z
 � h
	 S �5� ��� � h ���� �Ke����F�;��S

S L5
W ���
�5 � ��� � h W ����� � ch W x ��y"� (3)� hF��� �z
 �������i� � h���� �(����
 B &������$&(� (4)

where � h ��� � denotes the � -th component of the state vec-
tor at vertex � , ��� ��e9��� �(� is a one-hot encoding of label
symbols with � size of the label set, ch W x �%y denotes theU -th child of � , and � h � & � h W � are adjustable weights.

Proceeding in this fashion, the root state computed by
the network encodes the whole data structure and can be
used for subsequent processing.

4. Ordinal Regression and Preference Model

Work on learning theory has mostly concentrated on
classification and regression. However, there are many
applications in which it is desirable to order rather than
to classify instances: these problems arise frequently in

social sciences, in information retrieval, in econometric
models and in classical statistics where human prefer-
ences play a major role.

In a general learning task, we have an instance space� with associated a set . The goal of learning theory
is to compute a function � � � ��! which best mod-
els the probabilistic relation between these two spaces.
The properties of the set define two different learning
problems: (a) if is a finite unordered set, we have a
classification problem; (b) if is a metric space, e.g., the
set of real numbers, we have a regression problem. Ordi-
nal regression, partial ranking and preference model tasks
don’t fit in any two previous classes but share properties
of both classification and regression problems: (a) is
a finite set; (b) the elements of are ordered but is a
non-metric space, i.e. the distance �"J � T J) � of two el-
ements is not defined. So, as in classification problems,
we have to assign a possible label to a new instance, but
similar to regression problems, the label set admits a total
order relation.

The Utility Function Approach

Let C
 �F��G H � &;J H � �#&�������&.�KG H W�"$&(J H W�"(�q�'LH ��� be a training
set, where �KG H � &�������&pG H W�";� is the # -th set of competing ex-
amples, G H h *�_
 e f � , J H h *$
 � B &������$&pU H � is
the rank of G H h . In this setting, G H h is better than G H W
(written GNH h&% GgH W � if J%H h > J%H W . We can model the
importance of an instance by introducing an utility func-
tion '	�N�
 e f � ��ze f so that given G &)(�* � , thenG*%+(-, ' ��GI�/.0'?�1(<� . Since ' can be used to
rank all the instances of a set 2
 �'G/�!&pG�)%&�������&pG43'� ,
we have converted the ordinal regression and preference
model problems to the problem of approximating the util-
ity function ' with a function Y' .

Since G H % G h ,5'?��G H �6.7'?�KG h � , we can compute
the rank J H * � B &������$&)8�� of each instance G H as

J H

35
h;���

9 � Y'?�KG h �gT Y' ��G H �;� (5)

where
9 � e f]�� � B &;= � is the Heavyside function defined

as
9 � � �Q
 B if �-: = , 0 otherwise. In the case of a

preference model, we just want to select the best instanceG<; and we look at minimum among JoH computed in (5)
or, equivalently, G=;�
&��>@?<AB��C G " Y' ��G H � .

The overall ranking error on a dataset of � sets can be
defined in terms of the utility function ' :

l
 L5W ���
D EF 5
H�G h�H I#u "KJ I#u |�L �M'?�KGIW H �gTN' ��GIW h �;�POQ (6)

where is L is a non-decreasing function that weights pair-
wise differences between predicted utilities and

D
a non-

decreasing function of the cumulative error. For example,
if
D

is the identity function and L � � �w
 9 � � � , equation
(6) counts the number of misranked instances. In case of

a preference model, assuming that G W � is the best alterna-
tive, we have:

l
 L5W ���
D EF 3(u5
h;�i) L �K'?�KGgW h �gT '?��GIW � �(�POQ!� (7)

Kernel Preference Model

We consider a simple model and we assume that the
utility function ' is linear and parametrized by an � -
dimensional vector V�
]� � ��&������$& � ��� :' ��GI�I
 �5 H ��� � H � H �
If G % (, then' ��GN� ./' ��(<� , V 1�G . V 1�(, V 1o��G T (<� . =&�
Then in a complete rank problem, the solution V satisfies
the following constraints:

V 1��KGIW H TQGNW h � . =
U
 B &������$&(� and #q&M�w
 B &������$&
8'Ww��J�W H >cJ�W h (8)

This is equivalent to binary classification of pairwise dif-
ferences between instances. In a preference model, in-
stead, assuming that G W � is the best alternative, the con-
straints that must be satisfied by V are:

VE1���G W � TOG W h'� . =
Uw
 B &������$&(� and �
 � &�������&
8 W � (9)

We see that the number of constraint in a complete rank
grows quadratically in the size of the alternatives, while it
is linear in a preference model.

Nonlinear utility function can be easily realized by in-
troducing a kernel function and mapping instances into
the associated feature space. In this case:

V��i1�x ����G W �.�gT ����G W h��vy:

�5� ��� J�t������7x ,-�KGIt��!�'&;G W ����TQ,-�KGIt��'�!&;G W h���S
T�,c��G t��	�
� &;GIW � �iS-,-�KG t������ &;GNW h �vy

for appropriate indexes � � and � � . In a preference model
or in an ordinal regression task, the { function is set to
the identity function to avoid ties between competing in-
stances generated by the sign function.

In the end learning, the classification task yields to
minimize an error function of the kind:

l
 L5W ���
3(u5
h;�<)

9 �"V 1ox ���KG W h'�gT ����G W �.�~y"� (10)

which is an instance of (7) where
D

is the identity func-
tion, L is the Heavyside function and '?��GI�
 V�1!����GI� .
Since the preference learning task is reduced to a standard
classification problem on pairs of examples, high classifi-
cation accuracy ensures a small classification error (10).

Recursive Neural Networks Preference Model

For the connectionist approach, we will consider only the
preference task. We implement ' with a neural network
architecture formed by an encoder that maps a tree into
a real vector representation (the state vector computed by
the recursive network on the root node of the tree itself)
and a feed-forward output network that performs the final
mapping into a real number [4].

We now model the probability for G � *$2 , where2
 ��G � &�������&pG 3 � , to be selected as the preferred ele-
ment by our model with parameters � , in the following
way:

 ��G ��� 2A&
�4�N
 �
��� G����

� 3h;��� � ��� G | � � (11)

Using this probability estimate, we can write the likeli-
hood of the training data as � L W ��� �KG W � � 2 W &
�4� . Learn-
ing proceeds maximizing the log-likelihood of the train-
ing data (i.e. minimizing the negative log-likelihood1)
with respect to the model parameters, which can easily
be shown to be equivalent to optimize � in order to mini-
mizing the ranking error:

L5
W ��� T���� ? �

��� G u � �
� 3(uh;��� � ��� G u | �

 L5W ��� ��� ? 3(u5h;��� � ��� G u | � � ��� G u � � � (12)

Minimization is achieved by a variant of the gradient de-
scend backpropagation algorithm [7]. Note that (12) is an
instance of (7) where

D � � ��
!��� ?�� � � , L � � �
 �
"

and '
is the combination of the recursive and the output neural
network.

5. Experimental Results

In order to compare the kernel and the connectionist
methods on a preference learning task, we have chosen
the linguistically relevant problem of first pass attach-
ment prediction. We performed two experiments: the first
using a large dataset to compare the two models perfor-
mance and the second on several smaller dataset splits to
assess the different generalization properties in a regime
of data scarcity for training.

5.1. The Learning Problem: First Pass Attach-
ment

An interesting problem in psycholinguistic is to deter-
mine structural preferences exhibited while interpreting
a sentence in a sequential fashion. In [10] a dynamic
grammar is developed to formalize this task, which is
called first pass attachment disambiguation task in the

1For a complete derivation see [4].

psycholinguistic literature. Under this framework, the
problem becomes that to process a sentence one word at
a time, from left to right, in an incremental way. At any
stage of the elaboration, the interpretation (i.e the syntac-
tic parse tree) is a fully connected structure, as opposed
to traditional parsing procedures that determine smaller
sub-structures to be joined at later stages. The key idea
of the dynamic grammar is to associate to each lexical
item the part of syntactic tree needed to connect that
item to the structure built up to that point: these parts
are called connection paths and can be automatically ex-
tracted from a corpus of parsed sentences [11]. Note that
the lexical items in the remainder of this paper are rep-
resented by their grammatical category (like verb, noun,
etc.), called part of speech (POS) rather than by the ac-
tual word. Given a syntactic interpretation for a fragment
of a sentence, called left context, and a new item that we
want to incorporate in the interpretation (i.e. to attach to
the left context), we have to decide: (a) at which point of
the left context to attach the connection path (the anchor2

point of the attachment); and (b) which connection path to
choose among several possibilities. The dynamic gram-
mar introduces therefore some ambiguities that in the end
generate several licensed parse trees, though only one of
these analyses will be the correct one. To have an idea of
the possible ambiguities, consider Fig. 1.

It has no bearing

1

2

3

4

PRP VBZ DT NN

NP

NP

VP

S

NP

It has no bearing
on

1 2 3 4

NP

IN

PP

ADVP

NP

IN

NP

QP

NP

NONE

SBAR

WHADVP

PRP VBZ DT NN

NP

NP

VP

S

NP

NP

PP

IN

ADJP

IN

PRN

NP

(a) (b)

Figure 1. Ambiguities: (a) possible anchor
points, (b) possible connection paths

Once the connection path has been attached to a left
context, we obtain an incremental tree. The first pass
attachment disambiguation task consists in choosing at
each stage the correct incremental tree and it can be natu-
rally casted into a preference or ranking task.

5.2. Heuristics for Prediction Enhancement

As shown in the analysis carried out in [4], the incre-
mental disambiguation task can be significantly enhanced
adopting two heuristics. The first heuristic is called tree
reduction and consists in removing nodes from the syn-
tactic parse that are considered irrelevant for discrimi-
nating between alternative incremental trees. Intuitively

2More precisely the anchor is the node in common between the con-
nection path and the left context once the connection path has been
joined.

these nodes are deep nodes, where the depth is measured
in respect of the part of the left context where the attach-
ment process takes place3. This reduction of the complex-
ity of the trees has been proved beneficial in increasing
the prediction accuracy.

The second heuristic consists in specializing the first
pass attachment prediction in respect to the class of the
item being attached. The idea is to train and employ spe-
cialized predictors for each different word classes (nouns,
verbs, etc.). The heuristic is applicable since the dif-
ferent classes naturally partition the dataset into non-
overlapping sets (for example, what is learned on at-
taching nouns is not relevant for attachment decisions on
verbs or punctuation).

5.3. Experimental Setup and Evaluation

The dataset used in our comparison experiments is the
Wall Street Journal (WSJ) section of Penn TreeBank [12],
chosen because of its large size (about 40,000 parsed sen-
tences, for a total of 1 million words) and because of its
status as a recognized benchmark in computational lin-
guistics.

In the first experiment, we used the literature-standard
split into train (sections 2–21), validation (section 24) and
test set (section 23). All parse trees have been prepro-
cessed with the reduction heuristic (see Sect. 5.2) and di-
vided in accordance to the POS tag of the word being
attached. The WSJ treebank uses 45 different POS tags
that we have grouped into 10 classes [4] (one for all tags
referring to nouns, one for verbs, etc.). Note that the in-
put data consists of a much larger number of trees since
each parse tree is split into incremental trees (one for each
word of the sentence) and each incremental tree in turn is
just part of a set where a single correct instance has to be
chosen among several candidate alternatives generated by
the dynamic grammar. The real dataset size can be esti-
mated considering that the average sentence length is 24
words and that for each word we have on average of 120
alternative incremental trees (ranging from a minimum of
2 to a maximum of 2000 alternatives), obtaining a total of
100 million trees.

The VP and the RNN prediction accuracy in the pref-
erence task have been compared varying the training set
size. In this way, we have estimated the learning curve
of the two approaches together with the prediction per-
formance. We expected the VP to show better generaliza-
tion properties and to outperform the RNN when trained
on small datasets due to the regularization guarantees of
the kernel method. We created incremental datasets with
100, 500, 2,000, 10,000 and 40,000 sentences, randomly
extracting them from the training set. Each of these in-
cremental datasets has then been partitioned into the 10
classes and a different VP and RNN has been trained for

3More precisely the discarded nodes are selected on the basis of lin-
guistically motivated characteristics, such as the notion of c-command,
though the result is the same.

each class of each dataset. The ranking error is computed
as the normalized number of correct elements ranked in
the first position in respect of the total number of sets.

Due to the high computational cost of the validation
procedure, the working and models parameters have been
optimized on a fixed validation set of 1,000 sentences.
These parameters have then been used for all the mod-
els in the presented experimentation. Specifically, for the
kernel VP the regularization parameter 6 is set to = � � ; for
the RNN the adequate state vector size has been fixed to
25 units (i.e. the minimum size to ensure enough expres-
sive power to learn the training set with high accuracy), a
learning rate � ranging from B =

�) to B =
��� and a momen-

tum �
0=�� B . Other parameters for the RNN are: weight
initialization with random weights in x T�=�� = B &qSa=�� = B y , hy-
perbolic tangent as the non-linear squashing function,
maximum node outdegree set to 15. Fixing the maximum
outdegree is an architectural constraint which, in our im-
plementation, has as a consequence the pruning of those
syntactic trees with very long production rules. Note that
since each child position is associated with its own set of
weights, pruning long productions avoids poor estimates
of the weights associated with very infrequent rules. Al-
lowing rules containing no more than 15 symbols, only
0.3% of the possible productions are pruned.

For the VP, training is carried out presenting all the in-
put elements in the training sets only once (one epoch).
For the RNN, training is continued until the error reaches
a minimum threshold. A 1,000 sentences validation set is
then used to determine the optimal epoch and select the
best weight configuration for generalization (early stop-
ping criterion). The number of iterations needed to reach
an error minimum varies with the size of the incremental
training sets from 5,000 to 5.

The results of the comparison are shown in Table 1.
The RNN exhibit 1% better prediction accuracy in respect
to VP and no evidence is found for the superiority ker-
nel VP when trained on a small dataset. In addition ker-
nel VP method has the drawback of high computational
costs: training over 5 splits of 100 sentences takes about
a week on a 2 GHz CPU and moreover VP does not scale
linearly with the number of examples as the RNN does.
For small datasets, the CPU time of kernel VP is about
the CPU time of RNN, while for larger datasets the elab-
oration times are much higher: in the first experiments,
VP took over 2 months to complete an epoch but RNN
learns in 1–2 epoch (about 3 days with a 2 GHz CPU).
This high computational cost has forced us to train the
VP for only one epoch in the full experiment with the
40,000 sentences. In order to verify the performance on
small datasets, we have carried out a more robust exper-
iment. To avoid differences due to random properties of
the chosen datasets, we train the two models on 5 splits of
100 sentences randomly chosen from WSJ sections 2–21.
For this experiment no class partition has been performed,
though sentences have been preprocessed with the reduc-
tion heuristic. Model parameters have been kept identical

VP after 1 Epoch
POS Size 100 500 2000 10000 40000

Noun 33.0 87.6 91.6 92.9 94.5 95.6
Verb 13.4 87.4 91.1 93.2 94.9 96.1
Prep 12.6 52.4 57.7 61.9 65.5 68.4
Art 12.5 73.5 82.6 85.8 88.9 90.4

Punc 11.7 49.1 61.0 66.7 74.3 77.5
Adj 7.5 75.8 81.8 85.3 87.9 89.0
Adv 4.3 34.2 41.2 44.3 49.0 53.6
Conj 2.3 53.7 61.3 68.1 71.9 75.0

Pos 2.0 92.5 93.5 94.6 95.6 97.1
Othe 0.7 35.1 45.3 65.4 74.2 78.2
Total 100 72.7 78.7 81.7 84.7 86.6

RNN
POS Size 100 500 2000 10000 40000

Noun 33.0 88.6 91.8 91.5 94.1 95.7
Verb 13.4 82.1 90.9 94.0 94.9 96.8
Prep 12.6 56.4 61.8 62.3 64.2 67.5
Art 12.5 69.6 85.2 87.7 89.4 91.0

Punc 11.7 63.4 68.2 74.3 79.0 80.8
Adj 7.5 77.0 83.6 83.2 87.0 89.5
Adv 4.3 34.8 45.1 51.9 56.1 59.4
Conj 2.3 60.8 59.6 68.5 76.8 78.7

Pos 2.0 60.0 89.8 94.1 97.5 97.1
Othe 0.7 11.0 51.7 65.5 77.7 68.6
Total 100 73.4 80.6 82.7 85.5 87.4

Table 1. VP and RNN in the first-pass attach-
ment prediction task. Modularization in 10
POS tag categories and results for various
training set sizes

to the previous experimentation. Results are reported in
Table 2, where column “Relative Error Reduction %” of
RNN respect to VP is computed as ��J:T � ��� � B =%=�T � ��� B =�= ,where J is the accuracy of RNN and � is the accuracy of
VP. The results confirm the hypothesis on the significant
superiority of RNN against the kernel VP even in regime
of scarce data available for training.

An advantage of the kernel VP is its smoothness in re-
spect to training iterations, i.e. validating the performance
on a working set yields a smooth, single-maximum func-
tion. In contrast the RNN is much more sensitive, making
it hard to decide for a good generalization point.

6. Conclusion

The experimental results do not indicate any better
performance of the kernel VP in respect to the RNN;
on the contrary, the connectionist approach outperforms
the other method, even when trained on a small training
dataset. It appears that RNNs are to be preferred, unless
good knowledge is available for the design of the right
kernel. In other terms, it is better to rely on a method

Split VP RNN Rel. Error Reduction %

1 76.0 76.3 1.3
2 75.7 78.6 11.9
3 75.4 77.2 7.3
4 75.3 75.9 2.4
5 74.5 77.1 10.2

Mean 75.4 77.0 6.5

Table 2. VP and RNN in the first-pass at-
tachment prediction task: 5 splits of 100
sentences

capable of building an adaptive representation of data,
rather than using a kernel method when it is not clear how
good is the kernel for the problem. A solution would be
to learn the kernel function, but learning the kernel is still
an open problem in the case of discrete structures.

Future work includes Collins reranking task [3], where
the problem is to rank parse trees generated and scored
with a parser. The task can be casted into a preference
problem over complete parse trees, and so it is similar to
the one studied in this paper. From an initial experimenta-
tion on small datasets, it seems that also in this task RNNs
are superior to kernel VP.

Acknowledgments

Thanks to Alessio Ceroni, Alessandro Vullo, Andrea
Passerini and Giovanni Soda for their fruitful comments.

References

[1] R. Bod. What is the Minimal Set of Fragments that
Achieves Maximal Parse Accuracy? In Proceedings of
ACL, 2001.

[2] M. Collins and N. Duffy. Convolution Kernels for Nat-
ural Language. In Proc. Neural Information Processing
Systems. NIPS 14, 2001.

[3] M. Collins and N. Duffy. New Ranking Algorithms for
Parsing and Tagging: Kernels over Discrete Structures,
and the Voted Perceptron. In Proc. of ACL, 2002.

[4] F. Costa, P. Frasconi, V.Lombardo, and G. Soda. To-
wards incremental parsing of natural language using re-
cursive neural networks. Applied Intelligence, 19(1/2):9–
25, 2003.

[5] P. Frasconi, M. Gori, and A. Sperduti. A General Frame-
work for Adaptative Processing of Data Structure. IEEE
Transaction on Neural Networks, 9(5):768–786, 1998.

[6] Y. Freund and R. E. Schapire. Large Margin Classifica-
tion using the Perceptron Algorithm. Machine Learning,
37(3):277–296, 1999.

[7] C. Goller and A. Kuechler. Learning Task-dependent Dis-
tributed Structure-representations by Back-propagation
through Structure. In IEEE International Conference on
Neural networks, pages 347–352, 1996.

[8] D. Haussler. Convolution Kernels on Discrete Structures.
Technical Report UCSC-CLR-99-10, University of Cali-
fornia at Santa Cruz, 1999.

[9] T. Jaakkola and D. Haussler. Exploiting Generative Mod-
els in Discriminative Classifiers. In Proc. Neural Infor-
mation Processing Systems. NIPS 10, 1998.

[10] V. Lombardo, L. Lesmo, L. Ferraris, and C. Seidenari. In-
cremental Processing and Lexicalized Grammars. In Pro-
ceedings of the XXI Annual Meeting of the Cognitive Sci-
ence Society, 1998.

[11] V. Lombardo and P. Sturt. Incrementality and Lexical-
ism: a Treebank Study. In S. Stevenson and P. Merlo,
editors, Lexical Representations in Sentence Processing,
Computational Psycholingusitics Series. John Benjamins,
in press.

[12] M. Marcus, B. Santorini, and M. Marcinkiewicz. Building
a Large Annotated Corpus of English: the Penn Treebank.
Computational Linguistics, 19:313–330, 1993.

[13] P. Sturt, F. Costa, V. Lombardo, and P. Frasconi. Learn-
ing First-Pass Structural Attachment Preferences with Dy-
namic Grammars and Recursive Neural Networks. Cog-
nition, 2003. In press.

[14] V. Vapnik. Statistical Learning Theory. John Wiley and
Sons, New York, 1998.

