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On Dieudonné’s Boundedness Theorem

GIUSEPPINA BARBIERI

Abstract. — We generalize the classical Dieudonné boundedness theorem for modular
measures on lattice ordered effect algebras.

1. — Introduction.

A famous theorem of Dieudonné [3] states that for compact metric spaces the
pointwise boundedness of a family of Borel regular measures on open sets im-
plies its uniform boundedness on all Borel sets.

In this note we furnish an abstract formulation of the boundedness
Dieudonné theorem for group-valued modular measures on lattice ordered effect
algebras. We use an abstract concept of regularity (see Definition 2.6) where F
and G play the role of compact sets and open sets, respectively. We generalize
Guariglia’s work [5].

Effect algebras have been introduced by Foulis and Bennett in 1994, they are
a generalization of orthomodular lattices and MV-algebras, in particular of
Boolean algebras.

2. — Notation and Preliminaries.
In this section we shall give some basie definitions and fix some notations.

DeFINITION 2.1. — Let (I, <) be a poset with a smallest element 0 and a
greatest element 1 and let © be a partial operation on L such that b © ais defined
if and only ifa < band foralla, b, c € L:

Ifagbthenbeagbandb@(bea)=a.

Ifa<b<cthencsb gceaand(cea)e(ceb)zbea.

Then (L, <, ©) is called a difference poset (D-poset for short), or a difference
lattice (D-lattice for short) if L is a lattice.

If not otherwise specified, let L be o D-lattice and (G,| ) be a seminormed
Abelian group. We recall that a real-valued function | | on the group G is 2
seminorm if and only if [0|=0, | —«|= || and |z +y| < ||+ |y| for any
z,y€G.
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One defines in L a partial operation @ as follows:
a @ b is defined and a ¢ b = ¢ if and only if ¢ © b is defined and ¢ © b = a.

The operation @ is well-defined by the cancellation law [4, page 13] (o < b, ¢
and b©a =coa implies b =c), and (L,®,0,1) is an effect algebra (see [4,
Theorem 1.3.4]).

‘Write a* =16 afor a € L. We say that a and b are orthogonal if @ < b* and
we write a L b. Therefore a & b is defined if and only if @ L b. If aq,...,a, € L

we inductively define a; & @ a, = (@ @ - D ap-1) G a, if the imra-rmsg.

side exists. The sum is independent on any permutation of the elements. We say
that a finite family (a,)]_; of (not necessarily different) elements of L is ortho-
gonal if ¢ & - - - & a,, exists.

We say that a sequence (a,),en of L is orthogonal if the set {a;,...a,} is
orthogonal, for every n € N. If (ay),cx is an orthogonal sequence, we set
DrnenQn = SUP{DBucra, : F finite subset of N} provided the right hand side
exists.

A function ¢ on L with values in G is called a measure if for every a,b € L,
with ¢ L b,

$a ® b) = ¢a) + ¢(b).

A modular measure is a measure which also satisfies the modular law, that is for
alla,be L

$a Vv b)+ ¢(a A b) = §a) + Hb).

Forthe rest of the paper let F, G be two sublattices of L. Moreover, we suppose
that f+e G for every f€F, G is closed under finite sums and that
98 (fAg eGforeveryge G, feF.

According to Avallone and Vitolo, we give the following definition:

DEFINITION 2.2. — We say that L has the SIP (Subsequential Interpolation
Property) if for every orthogonal sequence (g, )4 in L and every infinite M C N,
there exist an infinite A C M and an element b € L such that b > ®,crg, for
every finite ' C A and b L ®y,eqg, for every finite G C N\ A.

As observed in [2], the previous definition corresponds to the one introduced
in the Boolean case.

Imitating Guariglia’s work we say that

DEFINITION 2.3. — Gis a (D)-SIP lattice if, for every orthogonal sequence g, in
G, there exists a subsequence (g, Jxen of (gn)nen 2nd a sub-effect algebra of G with

QTP nantainine tha ~+ %o
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DEFINITION 2.4. — A modular measure ¢ on L is cal
every orthogonal sequence (gy)yen:in G we rmﬁw Ez

NOTATION 2.5. — Let ¢ be a 3&@8&58@@0

$(a) = sup{|¢(h)| : h € L, h <

and .
Co={heC h<a}.

DEFINITION 2.6. — We say that a modular measure ¢ is regular if for every
&> 0and

o for every a € L, there exist f € F and g € G such that
f<a<g and mm@@bAm
o for every f € F, there exist e € G, h € F, g € G such that

f<e<h<g and dgefi<e

3. — The theorems.

LEMMA 3.1. — Let @ be a set of regular modular measures from L to G such

that

e (a) SUPyeq 9@ < + oo for every g € G;

e (B) for every sequence (¢ )nery i @ and every othogonal sequence
(Gn)nen 0 G there ewists an infinite subset M of N such that
sup{|¢,(gn)| : m € M} < + oo.

Then sup{|$(@)| : ¢ € ®,a € L} < + oo.

PROOF. — Assume that sup{|¢(@)| : ¢ € ®,a € L} = +oc.

We will show that & satisfies the following property:

() For every a € G with sup{¢(a): ¢ € &} = +oc and for every n € N
there exist ¢c @ and g,a* €0, such that [¢g)|=n, g<a and
sup{¢(a*) : ¢ € D} = + 00.

Fix a € G with sup{¢(a) : ¢ € ¥} = +ooand n € N. ,

Let h € N such that sup{|¢(a)| : ¢ € ®} < h. There are two possibilities.

CASE 1. — There exist ¢ € @ and ¢t € F Aa such that |¢(t)| > 2(n + k) and
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In this case take 959" €6, f* € F su
~ s ) OT&TN&&MQ*\/Q\A A< ok

and §(@ A g™) ©8) <n+h, so0 |¢(f* Aa)| > n + h. s/thasang
Then if we put -

g =ac(f"Aa) and a*=g"Aa,

one can check that (¢,9,a*) € @ x G, x G are as desired.

CASE 2. - For every ¢ P and ¢
A € FAa, > impli

DA fe Bt 6] > 2(n + k) implies
] In *ﬂEm**omm@ let f € F, and ¢* € @ such that [6°(f)] > 4(n + h); then we can
ngm 97 €0, f* € F such that f < g* <f* <g* and mw*Q**®§A§+\@ So
16*( S >*S_ 22(n+h) and |¢*(@g* A a)| > 2(n + k). Therefore by mmmzs%aosm
sup{$(f*Aa): ¢ € B} < + oo.

Put

W

=g"Aa and @' =a0(f*Aa),
then they are as desired.

We can choose a; € G such that m:ﬁ@@:v” ¢ € D} =+ 00 (Simply, take
a; = Cﬁ. By (), we can find (@1,01,02) € @ x Ga, X Gy, such that |, (g w_ >1
91 < 0z, sup{$az) : ¢ € B} = + 0. H R
Continuing we can find, for every n e N, 16,92 > 7, g, <al ., and
sup{¢(an11) : ¢ € B} = + 0o, Then we obtain a mm@mgom Mﬂgw:mm e stwm an

orthogonal sequence (g,),ey € G such that
tradiction with (f). tne |,(g)] > n for everyn € N, a nom

, em.mcwmg 3.2. — Suppose that G is a (D)-SIP lattice and & is a set of G-eux-
austive regular modular measures Jfrom L to G such that SUPseq [P < + oo
Jorevery g € G. Then sup{|¢(@)| : p€ @, a ¢ L}< + co. e

Huxowm_. — It suffices to prove (8) of Lemma 3.1. For this, let (¢,),en be a se-

mMm:nm M.:n% meo (Gn)nen be an orthogonal sequence in G; then by assumptions
€re exists a subsequence (gy, Jneny of (¢r)nens contained i -

of Lt S1P. By oy e ﬁ%ﬂ neN 1ned in a sub-effect algebra £

MMM %0, G| < sup{|¢, @) : n e N,ge B} < + oo,
and this completes the proof. 1

We now offer a version of the theorem for measures with values in a topo-

logical Abelian i . -
" group. First we give the definition of boundedness in this fra-

DEFINITION 8.3. - Let G be topological Abelian group. A subset M of Gis

called bounded in G'if, for every (-nej i i
, ghbourhood U in G, th i
of G and an integer n € N with M c F' + U™". Frosafinlte subset 7
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PRroOPOSITION 3.4. — ([6, 6.8]) Let G be a topological Abelian growp. A subset M
of G is bounded if and only if, for every continuous seminorm | | on G,
SUpyen [yl < + 00

DEFINITION 8.5. — Let G be a topological Abelian group and U(0) be the set of
the neighborhoods of the neutral element in G. A modular measure on L with

values in G is regular if for every U € U(0) and
e for every a € L, there exist f € F and g € G such that

f<a<g and ¢ eU for r€ Ly

e for every f € F, there exist e € G, h € F, g € G such that
f<e<h<g and ¢@)eU for re€Lyy

THEOREM 3.6. — Suppose that G is a topological Abelian group, Gis a (D)-SIP
lattice and @ is a set of G-exhaustive pointwise bounded regular modular mea-
sures from L to G. Then @ is uniformly bounded.

Proor. — Observe that the topology of G is generated by a family of semi-
norms and a modular measure is regulay if and only if it is regular with respect to

this family of seminorms. Apply Proposition 3.4 and Theorem 3.2 to complete the
O

proof.
Theorem 8.6 generalizes the main result contained in Guariglia’s paper [5].
We continue offering a version valid for G satisfying the Subsequential

Completeness Property: ,

DEFINITION 3.7. — We say that G has the SCP (Subsequential Completeness
Property) if for any orthogonal sequence (gn)nen in G, there exists an infinite
subset A of IN such that ®,c4 g, existsin G.

We recall that a Boolean algebra R has the SCP if for any disjoint sequence
(@n)ney in B, there is an infinite subset A of N such that V,c40, exists in K.

THEOREM 3.8. — Suppose that G is a topological Abelian group, G has the SCP
and D is a set of G-exhaustive reqular modular measures from L to G such that
&) = {Pg) : € P} is bounded for every gec G Then H(L):= {a);
¢ € ®,a € L} is bounded.

Proor. ~As in Theorem 3.6 we may reduce to the seminormed case. It mﬁ.
fices to prove (f) of Lemma 3.1. For this, let (¢,)nex be a sequence in @ and



348

GIUSEPPINA BARBIERI

subsequence (g, Jnere of (gnnery such that @yengy, exists and belongs to G. Define
vn(A) := ¢,( Brea gn,) Whenever @pecagn, € G. With the aid of {1, 2.5], one can
check that they form a sequence of finitely additive measures. Moreover, the set
A:={A CN: Breadn, € G}isaBoolean algebra with SCP. By [6, 7.1.2] we have

sup @, Gn,) < sup{{vo(A)|: n € N,A € A} < + o0,
heN

and this completes the proof. v ]
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