Iperbole riferita al centro ed agli assi: Fuochi sull'asse delle $\mathbf{x}$


Iperbole riferita al centro ed agli assi: Fuochi sull'asse delle y


| $\overline{\mathrm{A}_{1} \mathrm{~A}_{2}}=2 \cdot \mathrm{a}$ | (asse trasverso) |
| :---: | :---: |
| $\overline{B_{1} \mathrm{~B}_{2}}=2 \cdot \mathrm{~b}$ | (asse non trasverso) |
| $\overline{F_{1} F_{2}}=2 \cdot \mathrm{c}$ | ( distanza focale) |
| $\mathrm{A}_{1}(\mathrm{a} ; 0) \quad \mathrm{A}_{2}(-\mathrm{a} ; 0)$ | (vertici) |
| $F_{1}(\mathrm{c} ; 0) \quad \mathrm{F}_{2}(-\mathrm{c} ; 0)$ | (fuochi) |
| $c^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$ |  |
| $y= \pm \frac{b}{a} \cdot x$ | (asintoti) |
| $e=\frac{c}{a}$ | $\left(\frac{\text { distanza focale }}{\text { asse transverso }}\right)$ |
| $\overline{\mathrm{A}_{1} \mathrm{~A}_{2}}=2 \cdot \mathrm{a}$ | (asse non trasverso) |
| $\overline{\mathrm{B}_{1} \mathrm{~B}_{2}}=2 \cdot \mathrm{~b}$ | (asse trasverso) |
| $\overline{F_{1} F_{2}}=2 \cdot \mathrm{c}$ | ( distanza focale) |
| $\mathrm{B}_{1}(0 ; b) \quad \mathrm{B}_{2}(0 ;-b)$ | (vertici) |
| $\mathrm{F}_{1}(0 ; \mathrm{c}) \quad \mathrm{F}_{2}(0 ;-\mathrm{c})$ | (fuochi) |
| $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$ |  |
| $y= \pm \frac{b}{a} \cdot x$ | (asintoti) |
| $e=\frac{c}{b}$ | $\left(\frac{\text { distanza focale }}{\text { asse transverso }}\right)$ |

## Iperbole

## Sdoppiamento nell'iperbole riferita al centro ed agli assi:

II: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$; $A\left(x_{0}: y_{0}\right) \quad A \in \mathfrak{I} \quad ;$ fascio in $A: y-y_{0}=m \cdot\left(x-x_{0}\right) \quad$ (aggiungendo ad entrambi imembri $2 \cdot y_{0}$ ) $\mathrm{y}+\mathrm{y}_{0}=\mathrm{m} \cdot\left(\mathrm{x}-\mathrm{x}_{0}\right)+2 \cdot \mathrm{y}_{0}$
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \Rightarrow b^{2} \cdot x^{2}-a^{2} \cdot y^{2}=1 \quad$ Passaggio per $A: \quad b^{2} \cdot x_{0}{ }^{2}-a^{2} \cdot y_{0}{ }^{2}=1$
Sottraendo:

$$
\begin{aligned}
& \Rightarrow b^{2} \cdot\left(x^{2}-x_{0}^{2}\right)-a^{2} \cdot\left(y^{2}-y_{0}^{2}\right)=0 \Rightarrow b^{2} \cdot\left(x-x_{0}\right) \cdot\left(x+x_{0}^{2}\right)-a^{2} \cdot\left(y-y_{0}\right)\left(y+y_{0}\right)=0 \Rightarrow \\
& \Rightarrow b^{2} \cdot\left(x-x_{0}\right) \cdot\left(x+x_{0}\right)-a^{2} \cdot m \cdot\left(x-x_{0}\right) \cdot\left[m \cdot\left(x-x_{0}\right)+2 \cdot y_{0}\right]=0 \Rightarrow \\
& \Rightarrow b^{2} \cdot\left(x-x_{0}\right) \cdot\left(x+x_{0}\right)-a^{2} \cdot m^{2} \cdot\left(x-x_{0}\right)^{2}-2 \cdot a^{2} \cdot m \cdot\left(x-x_{0}\right) \cdot y_{0}=0 \Rightarrow\left(x-x_{0}\right) \cdot\left[b^{2} \cdot\left(x+x_{0}\right) a^{2} \cdot m^{2} \cdot\left(x-x_{0}\right)-2 \cdot a^{2} \cdot m \cdot y_{0}\right]=0
\end{aligned}
$$

$\Downarrow$

- $\quad x-x_{0}=0 \Rightarrow x=x_{0}$
- $\quad b^{2} \cdot\left(x+x_{0}^{2}\right)-a^{2} \cdot m^{2} \cdot\left(x-x_{0}\right)-2 \cdot a^{2} \cdot m \cdot y_{0}=0$

Imponendo il passaggio per $A$ :
$b^{2} \cdot\left(x_{0}+x_{0}\right)-a^{2} \cdot m^{2} \cdot\left(x_{0}-x_{0}\right)-2 \cdot a^{2} \cdot m \cdot y_{0}=0 \Rightarrow 2 \cdot b^{2} \cdot x_{0}-2 \cdot a^{2} \cdot m \cdot y_{0}=0 \Rightarrow m=\frac{b^{2} \cdot x_{0}}{a^{2} \cdot y_{0}}$
Sostituisco il coefficiente angolare trovato nel fascio in A:
$y-y_{0}=m \cdot\left(x-x_{0}\right) \Rightarrow y-y_{0}=\frac{b^{2} \cdot x_{0}}{a^{2} \cdot y_{0}} \cdot\left(x-x_{0}\right) \Rightarrow a^{2} \cdot y_{0} \cdot y-a^{2} \cdot y_{0}{ }^{2}=b^{2} \cdot x_{0} \cdot x-b^{2} \cdot x_{0}^{2} \Rightarrow$
$\Rightarrow b^{2} \cdot x_{0}{ }^{2}-a^{2} \cdot y_{0}{ }^{2}=b^{2} \cdot x_{0} \cdot x-a^{2} \cdot y_{0} \cdot y \Rightarrow a^{2} \cdot b^{2}=b^{2} \cdot x_{0} \cdot x-a^{2} \cdot y_{0} \cdot y \Rightarrow \frac{b^{2} \cdot x_{0} \cdot x-a^{2} \cdot y_{0} \cdot y}{a^{2} \cdot b^{2}}=\frac{a^{2} \cdot b^{2}}{a^{2} \cdot b^{2}} \Rightarrow \quad \frac{x_{0} \cdot x}{a^{2}}-\frac{y_{0} \cdot y}{b^{2}}=1$

## Iperbole

## Iperbole equilatera:

Se in una iperbole: $\mathrm{a}=\mathrm{b} \Rightarrow \frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ diventa $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{y^{2}}{a^{2}}=1 \quad \Rightarrow \quad \mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{a}^{2}$

$$
x^{2}-y^{2}=a^{2}
$$



$$
\begin{array}{ll}
\overline{\mathrm{OA}_{1}}=\overline{\mathrm{OB}_{1}}=\mathrm{a} & \\
\overline{\mathrm{~A}_{1} \mathrm{~A}_{2}}=2 \cdot a & \text { (asse trasverso) } \\
\overline{\mathrm{B}_{1} \mathrm{~B}_{2}}=2 \cdot a & \text { (asse non trasverso) } \\
\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{a}^{2}=2 \cdot \mathrm{a}^{2} \Rightarrow \mathrm{c}= \pm \mathrm{a} \cdot \sqrt{2} & \\
\overline{\mathrm{OC}}=\overline{\mathrm{OF}_{1}}=\mathrm{a} \cdot \sqrt{2} & \\
\overline{\mathrm{~F}_{1} \mathrm{~F}_{2}}=2 \cdot a \cdot \sqrt{2} & \text { (distanza focale) } \\
\mathrm{A}_{1}(0 ; \mathrm{a}) \quad \mathrm{A}_{2}(0 ;-\mathrm{a}) & \text { (vertici) } \\
\mathrm{F}_{1}(0 ;+\mathrm{a} \cdot \sqrt{2}) \quad \mathrm{F}_{2}(0 ;-\mathrm{a} \cdot \sqrt{2}) & \text { (fuochi) } \\
\mathrm{y}= \pm \frac{\mathrm{b}}{\mathrm{a}} \cdot \mathrm{x} \Rightarrow \mathrm{y}= \pm \frac{\mathrm{a}}{\mathrm{a}} \cdot \mathrm{x} \Rightarrow \mathrm{y}= \pm \mathrm{x} & \text { (asintoti) } \\
\mathrm{e}=\frac{\mathrm{c}}{\mathrm{a}} & \text { ( distanza focale } \\
\text { asse transverso })
\end{array}
$$

