Index

Introduction	1
1. The NEMO Project	3
1.1 Neutrino astrophysics	3
1.2 Underwater/ice neutrino detectors	5
1.2.1 Light propagation in sea water and optical background	6
1.2.2 Observable sky	6
1.2.3 Ongoing projects	7
1.3 The NEMO km3 apparatus	8
1.3.1 Layout under study	8
1.3.2 Undersea net cabling	10
1.3.3 The tower	10
1.3.4 Optical modules	12
1.3.5 Architecture of data acquisition	14
1.3.6 Timing calibration and positioning	15
1.3.7 Site and shore station	16
2. The "NEMO Phase 1" apparatus	22
2.1 Introduction	22
2.2 General layout	23
2.3 The cabling	24
2.4 Electrical power system	29
2.5 Data acquisition system	30
2.5.1 Front end module	30
2.5.2. Synchronous protocol for data transport	33
2.6 Calibration systems	36
2.6.1 Acoustic positioning system	36
2.6.2 Time calibration requirements	38

Index

3. Timing Calibration System implementation	40
3.1 Offshore timing calibration system	40
3.1.1 System architecture	40
3.1.2 Optical pulser	41
3.1.3 The fibre	47
3.1.4 Optical network	49
3.2 Cable Calibration Station	52
3.2.1 The goal of the cable calibrations Station	52
3.2.2 Implementation	52
3.2.3 Measurements and performance	55
3.3 onshore clock system	56
3.3.1 Introduction	56
3.3.2 Project	57
3.3.3 Hardware implementation	61
3.3.4 Software implementation	65
4. Data Analysis and Results	69
4.1 Offshore Timing Calibration	69
4.1.1 How the system works	69
4.1.2 Timing Calibration Procedure	70
4.2 Data analysis	72
4.2.1 Raw analysis	72
4.2.2 Fine analysis	74
4.2.2.1 Selection of calibration signals	74
4.2.2.2 Offset interface	75
4.2.3 Results and discussion	78
4.2.3.1 Offset interface tool results	78
4.2.3.2 General results	83
4.4 Validity tests	
4.4.1 Fibre environment parameters tests	84
4.4.2 Onshore timing calibration	86
4.4.3 Lifetime test for light pulsers	87

5. Perspectives	89
5.1 Introduction	89
5.2 The project	89
5.3 Implementation and readiness	91
Conclusions	94
References	96
Acknowledgments – Ringraziamenti	98
Acronyms	100
Index	101
Figures index	104
Tables index	107

Figures index

Figure 1. Astrophysical sources images.	4
Figure 2. Sky map with the sources from the 3rd Egret catalogue.	7
Figure 3. The sites where are placed the ongoing projects around the world.	8
Figure 4. Three geometries chosen for the simulations.	8
Figure 5. Results of simulations for the three different geometries.	9
Figure 6. Layout of the NEMO apparatus.	10
Figure 7. Structure of the floor composed by several bars.	11
Figure 8. The upper floor connected by ropes to the buoy.	11
Figure 9. The folded tower composed by 4 floors.	12
Figure 10. Section of an OM.	13
Figure 11. photographs of OM integration phases.	13
Figure 12. Layout of the NEMO tower.	14
Figure 13. Add&Drops technique in DWDM technology.	15
Figure 14. Map of the sites explored by NEMO collaboration	17
Figure 15. Comparison of the absorption length mean.	18
Figure 16. Current intensity at sea bottom level at Capo Passero site.	19
Figure 17. Aerial view of Portopalo coast.	20
Figure 18. Refurbishment project of Capo Passero shore station.	20
Figure 19. Map of site of mini-tower deployment.	22
Figure 20. Mini-tower layout.	23
Figure 21. Instrumental view of mini-tower.	24
Figure 22. Detailed view of TBM cabling.	25
Figure 23. Backbone cabling detailed view.	25
Figure 24. Schematic view of breakout container.	26
Figure 25. Photograph of an open breakout during the integration phase.	26
Figure 26. Scheme of fibres cabling long the backbone.	27
Figure 27. Floor cabling.	27
Figure 28. Schematic view of electrical cables and fibres routing of FCM.	28
Figure 29. Photograph of integration phase.	28
Figure 30. Simplified diagram of power system.	29
Figure 31. Block scheme of power control system.	29

Figure 32. Photograph of an opened FPM before to fill it with oil.	30
Figure 33. Block scheme of FEM board.	30
Figure 34. Photograph of FEM board.	33
Figure 35. Photograph of offshore/onshore FCM main board.	35
Figure 36. Histograms of beacon distance from a hydrophone on the tower.	37
Figure 37. Histograms of third floor hydrophone 1.	38
Figure 38. Median error angle in function of accuracy offsets.	39
Figure 39. Splitting principle of calibration signals at floor level.	40
Figure 40. Shot of a single photoelectron signal got from sensor.	41
Figure 41. Schematic of the optical pulser circuit.	42
Figure 42. Intensity spectrum of blue LED HLMP CB15.	43
Figure 43. Angular dispersion of intensity LED HLMP CB15.	43
Figure 44. Photograph of collimator and fibre support.	44
Figure 45. Compact PMT Hamamatsu H6780 adopted to test the optical pulser.	44
Figure 46. Light pulse from the pulser as viewed with H6780 PMT.	44
Figure 47. Simulated current pulse flowing through the LED of the pulser board.	45
Figure 48. Current pulse flowing through the LED as measured on the pulser board	ł. 45
Figure 49. Intensity regulating section of optical pulser circuit layout.	46
Figure 50. Photograph of LED pulser complete of collimator and fibre coupling.	47
Figure 51. Spectrum attenuation of AFS 50/125 fibre.	48
Figure 52. Photograph of photomultiplier complete of fibre support.	48
Figure 53. Photo of setup up used to simulate the optical losses.	50
Figure 54. Final layout of the fibre network for minitower	50
Figure 55. Splitting pack integrated in FCM mechanical crate.	51
Figure 56. Front panel of SR620 Stanford Research System TDC.	52
Figure 57. Block scheme of cable calibration station.	53
Figure 58. VI control panel of optical pulser manager.	54
Figure 59. VI to manage and log the measurements of the cable calibration station.	54
Figure 60. Scheme of OMs tagging.	55
Figure 61. IRIG B protocol frame.	58
Figure 62. Absolute timing data protocol.	59
Figure 63. Block scheme of clock onshore station.	61
Figure 64. Mechanical view of NI – PXI 7811R.	62
Figure 65. Backside mechanical view of NI – PXI 1042Q crate.	63
Figure 65. Interface board.	64
Figure 67. Photograph of timing shore station.	64

Figure 68. LabView tool panels.	65
Figure 69. Front panel of FPGA VI.	65
Figure 70. LabView project tree panel of the software implemented.	66
Figure 71. Functions panel of Host VI where LabView FPGA module is installed.	66
Figure 72. Main console of timing shore station.	67
Figure 73. Extract of Time Console VI that sends an UDP packet to the DM.	70
Figure 74. Panel of timing calibration procedure VI.	70
Figure 75. Configuration file which contains the calibration commands.	71
Figure 76. Log file of calibration commands executed by time procedure VI.	71
Figure 77. Histogram of the calibration data inside the time windows of 125μ .	72
Figure 78. Histograms of II floor pulser calibration data in time windows of 125μ s.	73
Figure 79. Overlapping of 8 s of calibration signals.	75
Figure 80. Front panel of offset interface MatLab application.	76
Figure 81. Analysis settings of front panel offset interface.	76
Figure 82. The signal reconstruction methods available on front panel.	77
Figure 83. Plot panel of offset interface MatLab application.	78
Figure 84. Overlapping of reconstructed signals by cubic spline interpolation.	79
Figure 85. Zooming of figure 79 near the starting of pulses.	79
Figure 86. Histogram of figure 77.	80
Figure 87. A different view of the histogram of figure 79.	80
Figure 88. Fitting and histogram of reconstructed signals.	81
Figure 89. Graphical view of "time walk effect"	81
Figure 90. Six histograms of the arrival time, calculated by proportional threshold.	82
Figure 91. Block scheme of pressure and temperature test systems.	84
Figure 92. Oven chosen to perform the temperature test on the fibres.	85
Figure 93. Tap and vessel oil filled.	86
Figure 94. Onshore calibration system block scheme.	86
Figure 95. Test results of a pulser long life test.	87
Figure 96. Block scheme of timing calibration system of NEMO phase 2.	90
Figure 97. Simplified electric scheme of tele-power supply of the new optical pulser	s 91
Figure 98. Protocol chosen for communication time control unit – optical pulser.	92
Figure 99. Photograph of the prototype of new optical pulser board.	92
Figure 100. Photograph of Cyclone III FPGA evaluation board.	93
Figure 101. View of connection and Cyclone III boards assembled.	93

Tables index

Table 1. Sea cable features.	21
Table 2. Meaning of acronyms indicated in figure 21 .	24
Table 3. Time performance of the LED pulser measured by H6780	45
Table 4. Fibres investigated.	47
Table 5. Floors pulsed from floor pulsers.	51
Table 6. Summary of the delay introduced by fibre for all the paths.	55
Table 7. Main features of NI PXI – 7811R.	62
Table 8. Backplane signals of PXI divided from original specification.	63
Table 9. Some offset results.	83

Acronyms

AC	Alternating Current
ADC	Analog Digital Converter
ADCP	Acoustic Doppler Current Profiler
AGN	Active Galactic Nuclei
Br	Breakout
C*	C star (transmission meter)
CTD	Conductivity Temperature Pressure meter
DAC	Digital Analog Converter
DC	Direct Current
DM	Data Manager
DMA	Direct Access Memory
DRMS	Distance Root Mean Square
DSP	Digital Signal Processing
DWDM	Dense Wavelength Division Multiplexing
FCM	Floor Control Module
FCMI	FCM Interface
FE	Front End
FEB	Front End Buffers
FEM	Front End Module
FPGA	Field Programmable Gate Array
FPM	Floor Power Module
FWHM	Full Width at half Maximum
GPIB	General Purpose Interface Bus
GPS	Global Position System
GRB	Gamma Ray Burst
HC	Submarine Operable Connector
HDL	Hardware Description Language
IC	Integrated Circuit
ITU - T	Integrated offetal
JB	Junction Box
JTAG	Joint Test Action Group
LVDS	Low Voltage Digital Signal
NEMO	NEutrino Mediterranean Observatory
OM	Optical Module
PLL	Phased Locked Loop
PMT	Photo Multiplier Tube
RMS	Root Mean Square
ROV	Remotely Operate Vehicle
SMF	Single Mode Fiber
TBM	Tower Base Module
TS	Test Site
TSSC	Time Spectral Spread Codes
TT TT	Transit Time
TTS	Transit Time Spread
UDP	User Datagram Protocol
VI	Virtual Instrument
V I	