

Raffinamento delle fasi e del modello atomico

Density Modification

interpretazione di $\rho(x,y,z)$

Problema: densità elettronica di qualità insufficiente

- ambiguità nel tracciare la catena aminoacidica
- discontinuità nella mappa di densità elettronica

- Solvent flattening
- Non Crystallographic Symmetry Averaging

Solvent flattening

Assunzioni:

zona proteica = alta densità elettronica (localizzabile) zona solvente = bassa densità elettronica

si costruisce una maschera attorno alla zona proteica

- si pone $\rho(x,y,z)$ = costante (piccola) all'esterno della maschera
- calcolo nuove fasi
- calcolo nuova densità elettronica

3

Solvent flattening

prima solvent flattening

dopo solvent flattening

Non Crystallographic Symmetry (NCS) Averaging

Prerequisiti:

- 2 o più molecole proteiche nell'u.a.

Assunzione:

 $\rho(x,y,z)$ di molecole legate da NCS è identica

- operatori di NCS noti
 - maschera attorno alla $\rho(x,y,z)$ di una molecola
 - applicazione degli 'n' operatori NCS
 - media delle 'n' $\rho(\textbf{x},\textbf{y},\textbf{z})$ e calcolo nuove fasi
 - Segnale/Rumore aumenta di n^{1/2}
 - calcolo nuova densità elettronica

dopo NCS av.

Risoluzione sperimentale

$$\rho(\vec{x}) = \frac{1}{V} \sum_{\vec{h} \in \{\min\}}^{\{\max\}} F(\vec{h}) \exp\left[-2\pi i(\vec{h}\vec{x})\right]$$

<section-header>

Raffinamento e validazione

- costruzione modello atomico nella densità elettronica
- raffinamento cristallografico

(verifica accordo fra modello e dati sperimentali)

- validazione del modello
- sottomissione del modello al PDB

Problema:

basso rapporto osservazioni/parametri: parametri per ciascun atomo = (x_j, y_j, z_j, B_j); B_j $\propto \langle u_j^2 \rangle$

(Per esempio: parametri = (12000 atomi x 4 parametri= 48000)

osservazioni = I_{hkl} (osservazioni a 2.1 Å = 138000 \rightarrow o/p=2.9)

ambiguità nell'interpretazione della densità elettronica

Soluzione:

- aumentare il numero delle osservazioni: alta risoluzione dei dati (< 1.5 Å)
- utilizzare informazioni addizionali: stereochimica strutturale nota (geometrical restrains)

7

Stereochimica

Per ogni amminoacido (circa 8 atomi) occorre determinare come minimo 6 parametri: - gli angoli ϕ,ψ

- 2 angoli per definire la posizione della catena laterale: χ_1, χ_2
- due B factor: uno per la catena principale e l'altro per la catena laterale

Dunque, riprendendo l'esempio di prima 12000/8 x 4 = 6000 parametri osservazioni = 138000 \rightarrow o/p=23

Conclusione: grazie ai vincoli stereochimici abbiamo circa 20 osservazioni sperimentali per ogni parametro

Costruzione del modello atomico

- catena principale (scheletro $C\alpha$)
- catene laterali
- molecole solvente

Raffinamento strutturale vincolato

processo iterativo di correzione del modello volto a minimizzare una funzione di

energia generalizzata: C = R +k'U

accordo con i parametri stereochimici

$$U = \sum_{j} B_{j} (b_{j}^{obs} - b_{j}^{cal})^{2} + \sum_{j} T_{j} (\tau_{j}^{obs} - \tau_{j}^{cal})^{2} + \sum_{j} \Phi_{j} (q + \cos(n\phi_{j} - \delta)) + \sum_{i,j} (A_{i,j}r_{i,j}^{-12} - B_{i,j}r_{i,j}^{-6})$$

lunghezza legami

angoli di torsione

Validazione modello

Esame del modello finale raffinato:

$$R = \frac{\sum_{\mathbf{h}} ||F_{obs}(\mathbf{h})| - k ||F_{cal}(\mathbf{h})||}{\sum_{\mathbf{h}} ||F_{obs}(\mathbf{h})||}$$

PDB

- accordo fra modello e dati sperimentali (R-factor)
- Free R-factor (per evitare l'overfitting dei dati)
- stereochimica delle strutture macromolecolari
- contatti/interazioni fra residui vicini spazialmente

CRYST1	39.550	74	4.570	66.560	90.00	99.94	90.00 P 1	21 1	4	
ATOM	1	CB	SER	1	30.854	-6.329	36.118	1.00	41.46	6
ATOM	2	OG	SER	1	31.600	-7.531	36.190	1.00	44.54	8
ATOM	3	С	SER	1	30.991	-3.833	36.183	1.00	40.24	6
ATOM	4	0	SER	1	30.868	-2.883	36.961	1.00	40.08	8
ATOM	5	Ν	SER	1	31.848	-5.217	38.114	1.00	39.55	7
ATOM	6	CA	SER	1	31.668	-5.130	36.630	1.00	40.83	6
ATOM	7	Ν	THR	2	30.605	-3.796	34.906	1.00	39.92	7
ATOM	8	CA	THR	2	29.920	-2.658	34.286	1.00	38.97	6
ATOM	9	CB	THR	2	30.734	-2.067	33.086	1.00	39.67	6
ATOM	10	OG1	THR	2	31.045	-3.101	32.139	1.00	38.83	8
ATOM	11	CG2	THR	2	32.020	-1.403	33.566	1.00	38.83	6
ATOM	12	С	THR	2	28.542	-3.116	33.777	1.00	38.40	6
ATOM	13	0	THR	2	27.815	-2.341	33.141	1.00	38.79	8
ATOM	2166	HOH	WAT	401	20.048	3.400	49.038	1.00	31.45	8
ATOM	2167	HOH	WAT	402	-9.403	0.553	32.633	1.00	44.09	8
ATOM	2168	HOH	WAT	403	3.928	-6.370	32.724	1.00	21.48	8
END										

11

http://www.pdb.org

Protein Data Bank

100547 Structures (2014)

- 3 metodi principali:
- X-ray crystallography (~ 88.6%)
- -(NMR) (~ 10.4%)
- -Electron microscopy (0.8%)

1400 different folds

13