High Performance Non-Planar Tri-gate Transistor Architecture

> Dr. Gerald Marcyk Director Components Research Logic Technology Development

What Are We Announcing?

- Invention of a novel tri-gate fully depleted transistor with industry leading performance
 - Research targeted for 2nd half of the decade
- A three dimensional extension of the TeraHertz architecture
 - Highest reported drive current for non-planar devices
 - Depleted substrate improves I_{off} leakage
- Improved manufacturability over proposed double gate structures
 - Uses 300mm equipment and existing lithography capabilities

Why is this Important?

- Transistor research breakthroughs will allow us to continue Moore's Law through end of decade
- IC Industry is making transition from Planar to Non-Planar Transistors
- This development has potential to enable products with higher performance that use less power
- Intel transistors lead industry performance in both research and manufacturing
- Intel's \$4B investment in R&D continues on track: delivering a new process technology every 2 years

Moore's Law A new technology every 2 years

Process Name	<u>P856</u>	<u>P858</u>	<u>Px60</u>	<u>P1262</u>	<u>P1264</u>	<u>P1266</u>	<u>P1268</u>
1 st Production	1997	1999	2001	2003	2005	2007	2009
Lithography	.25µm	.18µm	.13µm	90nm	65nm	45nm	32nm
Gate Length	.20µm	.13µm	<70nm	<50nm	<35nm	<25nm	<18nm
Wafer Size (mm)	200	200	200/300	300	300	300	300
		Manufacturing					
				Deve	elopment		
				Research			arch
		Copy Exactly!					
Intel		Pathfinding					

4

Accelerated Scaling of **Planar Transistors** 130nm Node

70nm Length (Production2001)

90nm Node

50nm Length (Production in 2003)

65nm Node

45nm Node

30nm Prototype (Production in 2005)

32nm Node

20nm Prototype (Production in 2007)

15nm Prototype (Production in 2009)

Silicon devices are Nanotechnology

Transistor for 90nm process

Source: Intel

Influenza virus

Source: CDC

15nm Research Transistor

Transistor Gate Length Scaling

Planar Transistor Problem: Smaller Devices have Higher Leakage

We need novel device structures to meet this challenge Intel

Intel's TeraHertz Transistor: Lower I_{off} Leakage

Fully Depleted Substrate: Subthreshold Leakage is Approaching Theoretical Minimum

A Switch to Non-Planar CMOS Transistors

- Planar TeraHertz Transistor Improves
 Leakage
 - Control of Nano-thick Silicon Layer becomes the Manufacturing Issue
- Three Dimensional Devices (Non-Planar) have been Proposed by Researchers
 - Dual Gate, FinFET, etc.
 - Complex Fabrication processes
 - Measured Device Performance has been Disappointing

New Tri-Gate Transistor Structure

Oxide Substrate

Tri-gate Transistor works in Three Dimensions

Tri-Gate

Buried Oxide

Planar CMOS

Tri-Gate's Geometry Advantage

Tri-gate is Fully Depleted Without Unusual Lithography Patterning or SOI Thickness Control Issues.

Intel

Multi-Channel Tri-gate Devices: Even More Drive Current

Conclusions

- High-Performance Tri-Gate Fully-Depleted CMOS with 60nm physical gate length has been Demonstrated
- Tri-gate Fully-Depleted CMOS exhibits lower leakage than standard planar CMOS
 - Similar to Planar TeraHertz Transistor
- Unique Tri-Gate Geometry is more Manufacturable than Fully-Depleted Planar and Double Gate structures.
- Tri-gate with Spacer-Defined Fins has Potential to deliver 20% Higher Total Current per unit Layout Area than Standard CMOS

Additional details of this Tri-gate transistor technology will be presented at the International Solid State Device and Materials Conference in Nagoya Japan on Sept 17, 2002

For further information on Intel's silicon technology, please visit the Silicon Showcase at www.intel.com/research/silicon

BACK – UP MATERIAL

New Tri-gate Transistor Structure

Improved Manufacturability Width = Height = Gate Length

Double Gate FinFET Transistor

Major Problem: Fin Width must be <u>Narrower</u> than Gate Length Lithography becomes the Key Limiter

90 nm Generation Transistor

Strained Silicon Transistors

