
Modeling Assembly Instruction Timing
in Superscalar Architectures

G. Beltrame†, C. Brandolese§, W. Fornaciari§, F. Salice§, D. Sciuto§, V. Trianni§
§ Politecnico di Milano, Piazza L. da Vinci, 32 20133 Milano, Italy

† CEFRIEL, Via R. Fucini, 2 20133 Milano, Italy

ABSTRACT
This paper proposes an original model of the execution time
of assembly instruction in superscalar architectures. The ap-
proach is based on rigorous statistical foundations and pro-
vides a methodology and a toolset to perform data analysis
and model tuning. The methodology also provides a frame-
work for building new trace simulators for generic architec-
tures. The results obtained show a significant accuracy im-
provement over previous works.

1. INTRODUCTION

2. MATHEMATICAL MODEL
The basic assumption made in [?] and maintained in [?]
concerns the a priori knowledge of instruction CPIs. In this
case, the interlock–free timing of a program can be easily
obtained by simply summing the CPIs of all the executed
instructions. The interlock–aware timing can also be ob-
tained including the statistical term representing the stall
overhead associated to every single instruction. Stall over-
heads are obtained by suitably averaging the contribution
deriving from the dynamic interaction between instructions
falling within a trace window of fixed size. In superscalar ar-
chitectures, the parallel execution of assembly instructions
strongly influences both the actual CPI of an instruction
and the number and type of possible interlocks. For exam-
ple, when the three instructions γ1, γ2 and γ3 are executed
in an ideal pipeline the resulting CPI of each one is 1.0;
In a superscalar architecture with three ideal pipelines in
parallel, the resulting CPI is 1

3 . However, real processors
are significantly different than ideal architectures and only
a portion of the theoretical parallelism can be exploited. To
this purpose, a parallelism coefficient has been introduced
and defined according to a statistical analysis of the execu-
tion of actual programs on a given architecture. Indicating
tn(γs) and toh(γs) the number of clock cycles for nominal
execution and the number of stalls of instruction γs and
with ps th parallelism coefficient, the estimated CPI can be

expressed as:

CPIs,est = ps · (tn(γs) + toh(γs)) (1)

It is interesting to note that the energy absorbed by each
instruction is not influenced by parallel execution while av-
erage power ws increases, as shown by the following relation:

ws =
es

CPIs,est · τ
(2)

where τ is the clock period and es the absorbed energy. The
following paragraphs describe how the parallelism coefficient
ps is defined and how it can be derived from a statistical
analysis of program execution traces.

2.1 Instruction Set Taxonomy
In order to maintain the approach as general as possible, no
specific architecture or set of architectures should be consid-
ered. Each architecture is, in fact, characterized by strongly
different execution capabilities, leading to significant differ-
ences in the actual parallelism. A possible solution to this
issue is to define a set of general classes to which instruc-
tions of a specific architecture can be assigned. The classi-
fication must account for the dynamic interaction between
instructions with respect to both interlock effects and par-
allel execution.

Definition 1. The equivalence relation R ⊆ I × I:

si R sj ⇐⇒ si and sj have similar dynamic behavior;

defines a taxonomy C ∈ 2I on the instruction set I as the
partition induced by R on the instruction set I. The cardi-
nality |C| of the taxonomy depends on the relation R. The
taxonomy C is thus formed by the classes ci with i ∈ [1; |C|].

Definition 1 gives a way to obtain the taxonomy based on
the equivalence relation R. Nevertheless, R is still to be
properly defined for each instruction set and architecture.
Three approaches are possible:

Architectural The relation R is defined a priori and is
based on the knowledge of both the instruction set
and the architectural details.

Numerical The relation R is defined a posteriori based
on the data extracted from simulation of the dynamic
behavior of instrucitons.

Full The relation R is always false. In this case each in-
struction belongs to a different case, i.e. no classifica-
tion is performed.

Section ?? shows and discusses the results obtained folloing
these classification paradigms.

2.2 Model Definition
The model expressed by equation (1) depends on two pa-
rameters: the interlock overhead noh,s and the parallelism
coefficient ps. The present work is based on a previous model
[?] and extends it in order to fit superscalar microproces-
sors. The original model defined an execution trace Γ as an
ordered list of instructions resulting from actual execution
of a program. Let a trace Γ be:

Γ = {γ1, γ2, . . . , γN}, γk ∈ I, N > 0 (3)

where N indicates the execution trace size. Instructions γk

are then classified based on the relation R and the member-
ship function can be defined accordingly as:

〈k, i〉 =
�

1 if γk ∈ ci

0 otherwise (4)

A timing overhead t(γk), introduced by dynamic effects dur-
ing the execution, can be associated to the instruction that
has been stalled in order to resolve an hazard situation.
Based on the classification imposed by R, such overheads
have to be collected and associated to instruction classes,
rather than single instructions. This leads to the definition
of a stochastic variable Di whose density is given by the
relation:

fDi(d) =
PN

k=1 δt(γk)=d〈k, i〉PN
k=1〈k, i〉

(5)

where N is suitably large1 and δ is the Kronecker symbol.
The overhead noh,s can be obtained as the expectation value
of Di for the index i such that Is ∈ ci.

2.3 Parallel Execution Model
The parallelism factor can be estimated experimentally start-
ing from the execution trace Γ and observing the instruc-
tions that are executed in parallel. Similarly to the compu-
tation of overheads, the parallelism coefficients are referred
to instruction classes. According to such approach, the more
instructions belonging to a given class ci are executed in par-
allel, the lower the corresponding parallelism coefficient pi

is, and thus the lower the actual CPI for instructions of that
class is also. To determine ps it is necessary to know when
a given instruction γk starts and ends executing. The no-
tion of time is here intended as the number of clock cycles
since the beginning of the execution. This is clarified by the
following definition.

Definition 2. Let tin(γk) the starting time of a generic
instruction γk ∈ Γ and tout(γk) its ending time. The time
range membership function of instruction γk with respect
to class ci ∈ C at time t is defined as:

dt, k, ic =
�
〈k, i〉 if tin(γk) ≤ t ≤ tout(γk)
0 otherwise (6)

1For a good approximation, N ≥ 106.

where the values tin(γk) and tout(γk) are properties of the
instruction γk with respect to a given trace Γ.

It is worth noting that the time range between tin(γk) and
tout(γk) is given not only by the instruction latency but it
also includes the inter–instruction overhead resulting from
stalls or cache misses. When an instruction is stalled, in fact,
it still occupies some resources. The time range membership
function allows to know, at each clock cycle, which instruc-
tions are being executed. Starting from the time range mem-
bership function it is possible to aggregate values for each
class.

Definition 3. The class load function represents the
number of instructions belonging to class ci being executed
at time t. It is defined as

dt, ic =
NX

k=1

dt, k, ic (7)

The class load function can be used to compute an instan-
taneous parallelism coefficient, defined as follows.

Definition 4. The instantaneous parallelism coeffi-
cient is defined as:

p(t) =
1P|C|

i=1dt, ic
(8)

where the sum is extended to all classes in the taxonomy.

It can be easily proved that p(t) ∈ [1/N ; 1] with N being
the maximum number of instruction that the specific archi-
tecture is capable of handling in the same clock cycle. As an
example consider a simple DLX–like 5-stage pipeline archi-
tecture: in this case N = 5 since when the pipeline is full all
its stages are executing an instruction at every clock cycle.
The instantaneous parallelism coefficient p(t) must then be
aggregated according to the selected taxonomy in order to
obtain a per–class vision of the amount of parallelism that
the architecture under analysis can actually exploit. The
following definition introduces such concept.

Definition 5. The class parallelism coefficient is the
time reduction factor associated to an instruction belonging
to class ci when executed in parallel with other instructions.
It is modeled by the stochastic variable Pi, which is charac-
terized by its density function:

fPi(p̂) =
P

t δp(t)=p̂dt, icP
tdt, ic

(9)

where the summations are extended over all clock cycles
needed for the execution of the trace Γ.

The parallelism coefficient ps can be then assumed to be the
expectation value of the stochastic variable Pi, that is:

ps = E[Pi] =
1X

p=0

p · fPi(p) Is ∈ ci; p ∈ Q (10)

It must be noted that the variable p ∈ Q since it is com-
puted as the ratio of two integer numbers and 0 ≤ p ≤ 1 by
definition.

3. TRACE SIMULATION
To calculate both overheads and parallelism coefficients a
cycle–accurate simulation of the timing behavior of a given
architecture is necessary. In particular, for each instruction
γk actually executed, the following times must be deter-
mined:

• the starting time tin(γk),

• the ending time tout(γk),

• the nominal execution time tn(γk).

The execution time overhead toh(γk) can be easily expressed
in terms of these times, as the following equation shows:

toh(γk) = tout(γk)− tin(γk)− tn(γk) (11)

It is worth noting that the nominal execution time can be
found in the processor datasheets while tin(γk) and tout(γk)
can only be determined by performing a pseudo–simulation,
i.e. a simulation that only accounts for the timing properties
of the instruction while neglecting their functionality. This
is possible thanks to the fact that the simulated instruc-
tions are taken from an execution trace, which is dynamic,
rather than from the assembly code generated by compila-
tion, which is, on the contrary, static. These considerations
and the goal of being as independent as possible from a
specific architecture have led to the development of a cus-
tomizable pseudo–simulation framework, whose structure is
shown in figure ??.

Figure 1: Trace simulation flow

3.1 Microcompilation
The execution trace is first fed to the atomic microcompiler
that translates each assembly instruction in a sequence of
microinstructions. This step has the goal of decomposing
the complex activity of a generic instruction into a sequence
of basic activities involving only few basic operations. Ta-
ble ?? exemplifies the microcompilation process by means of
three examples. For the sake of clarity, let us briefly describe
the meaning of the microinstructions in the first example.
The two read are used to perform read requests to the inte-
ger register file, specifically of the the registers %r0 and %r1.
The microinstruction require indicates that the execution
of the multiplication is performed by the integer ALU and
requires 16 clock cycles2. Finally the write microinstruc-
tion indicates that register %r2 is written. It is important
noting that whenever a register needs to be written it must
2This is the nominal execution time tn(γk).

SPARCv8 Assembly Microcode
mul %r0, %r1, %r2 read 0 regfile-int

read 1 regfile-int
require 16 alu-int
write 2 regfile-int

ld [%r0,%r1], %r2 read 0 regfile-int
read 1 regfile-int
load 1 address
write 2 regfile-int

fadd %f0,%f1, %f2 read 0 regfile-fp
read 1 regfile-fp
require 5 alu-fp
write 2 regfile-fp

Table 1: Microcode examples

be locked, for example at decode–time, to avoid subsequent
instructions to use its content before the up–to–date value is
actually present. The lock is then removed at a later stage,
for example at retire–time. Other microinstructions work in
a similar manner. As a further remark, it interesting to ana-
lyze the meaning of the load microinstruction. It is used to
require a memory access and does not explicitly specify the
number of clock cycles necessary to complete the operation.
This intentional generality allows to model different mem-
ory hierarchies and thus permits to include in the interlock
model all memory– and cache–related effects.

3.2 Behavioral simulation
The microcompiled trace is then fed to the behavioral sim-
ulator tribes. The simulator is composed of two main por-
tions: a general purpose simulation engine and a set of cus-
tom, user–defined functional units and resources implement-
ing the behavior of a specific architecture. According to this
scheme, an architecture is composed of a set of functional
units connected by instruction buffers and resources. The
functional units communicate with the resources by means of
messages. Figure ?? describes this architecture. Functional

Figure 2: Behavioral simulator structure

units and instruction buffers are always synchronized by the
clock signal, while resources may or may not have an ex-
plicit notion of time. According to this scheme, instruction

traverse the different functional units which basically be-
have as dispatchers (determining the path) and schedulers
(determining the timing). The simulation engine provides:

• Base classes from which specific functional units and
resources can be built exploiting inheritance.

• Primitives for instantiating and connecting functional-
ities and resources by means of buffers and messages.

• The notion of a global discrete time managed by the
simulation kernel.

Such framework is flexible enough to model a very large set
of architectures and, at the same time, sufficiently standard
to provide a wide range of capabilities that each specific
simulator can exploit without modification.

3.3 Data analysis
The output of the behavioral simulator is an annotated
trace, that is a list of annotated instructions. Each line
of the output has the structure:

< class > < toh > < tin > < tout >

and provides all data necessary for model tuning, which is
performed by the stand–alone tool tune. This tool elabo-
rates the input data and constructs, for each class i, the av-
erage parallelism coefficient pi and the density function fDi

of the timing overheads. It is worth noting that the tuning
process requires very large trace files and for this reason the
tool chain can be conveniently executed in a pipeline.

4. MODEL TUNING
The methodology and the simulation framework have been
set up to model the microSPARC II Embedded Processor
architecture. Figure ?? shows the structure of the architec-
ture in terms of functional units, buffers and resources and
highlights the possible paths of instruction through the var-
ious units. A detailed description of this architecture can be
found in ??. The simulator has been stimulated

benchmarks per la traccia (gcal, gzip, cpp2html, bc)(FP????)

5. EXPERIMENTAL RESULTS
6. CONCLUSIONS

Figure 3: microSPARC II simulator structure

