Dynamic Modeling of Inter-Instruction Effects for
Execution Time Estimation

G. Beltramef, C. Brandolese?, W. Fornaciari?, F. Salice?, D. Sciuto?, V. Triannis
§ Politecnico di Milano, Piazza L. da Vinci, 32 - 20133 Milano, ltaly
{brandole ,fornacia,salice,sciuto ,trianni}@elet .polimi.it
t CEFRIEL, Via R. Fucini, 2 - 20133 Milano, ltaly

beltrami@Qcefriel.it

ABSTRACT

The market for embedded applications is facing a growing
interest in power consumption issues: this work is intended
to provide a new model to estimate software—level power
consumption of 82-bit microprocessors. This model extends
previous ones by considering dynamic inter—instruction ef-
fects that take place during code execution, providing a static
means to characterize the energy consumption associated
with them. The model is formally sound: it is conceived for
a generic architecture and it has been preliminary validated
on the Intel{86™ architecture.

1. INTRODUCTION

While there has been a significant research effort in power es-
timation techniques and low power design tailored for hard-
ware systems, no EDA tools are available to help hard-
ware/software embedded systems designers [4]. The main
obstacle is an efficient analysis of the CPU power consump-
tion, necessary to take into account also the software com-
ponents during design—space exploration, while avoiding to
rely with architectural or even layout-level simulation of the
microprocessor. To fill such a gap, strategies working at the
instruction—level recently appeared in literature. In fact,
having a power model of assembly instructions is a value
added for designers, since the increasing complexity of em-
bedded systems software is evident and the need of early
prototyping of embedded systems, in particular in terms of
power consumption, is becoming a must. In [12][13][11] a
priori knowledge of the current drawn by an instruction is
obtained by executing an infinite loop of the target instruc-
tion in order to average out fine—grained fluctuations. These
approaches are strongly processor—dependent and normally
the statistical significance of power figures is not taken into
account. A different approach, working on the concept of
early wvirtual prototyping of the software for different tar-
get CPU cores has been proposed in [1]. This methodology
abstracts from the architectural level and focuses on the

functionalities involved during instruction execution. The
resulting functional model decouples the execution time of
an instruction from its average power consumption. This
allows a static (data independent) characterization of each
instruction in terms of the energy consumed together with a
statistical validation of the resulting software power model.
These assumptions are the basis for the work presented in
this paper, which concentrates on timing aspects. To con-
sider also the presence of dynamic inter—instruction effects
such as pipeline interlocks or cache misses, which typically
lead to an additional energy consumption not to be ne-
glected in a overall system-level perspective, the previous
approaches should be extended. In fact, even if estimates
are accurate for the static microprocessor model, the in-
troduction of dynamic inter-instruction effects may cause
severe strays from reality for the entire system. The im-
portance of this problem has been recognized in [10], where
an instruction-level power model that considered dynamic
effects is presented. The solution is based on a modification
of the model proposed in [12][13] to obtain a more precise
estimate for the base costs. Basically, the authors separated
instructions with the same opcode but different addressing
modes and added a statistical analysis of cache and pipeline
interlock overheads. Unfortunately, this solution is still not
general, in the sense that it needs measures for every pro-
cessor it has to be applied to. The goal of this paper is to
overcome the above limitations, providing a general model to
describe interlock overheads for different types of processor
cores, to complete the information provided via static anal-
ysis. This model is going to be implemented in a co-design
flow in order to obtain a truly accurate and efficient soft-
ware power estimation tool [9]. This paper is organized as
follows: Section 2 defines the problem of considering inter—
instruction effects in the scope of a static analysis; Section 3
introduces the mathematical and statistical models; Section
4 describes the methodology for model tuning, and Section
5 presents some experimental results. Finally, some conclu-
sions are drawn in Section 6.

2. PROBLEM DEFINITION

In this work, the model proposed in [1] is extended, tak-
ing into account inter—instruction effects related to pipelin-
ing. Interlocks are generally related to the execution of a
particular sequence of instructions, thus they correspond to
dynamic events. Taking into account such effects implies
either a dynamic analysis, which requires an excessive com-
putational complexity, or an accurate characterization of the



