An Assembly-Level Execution—-Time Model
for Pipelined Architectures

ABSTRACT

TThe aim of this work is to provide an elegant and accu-
rate static execution timing model for 32-bit microproces-
sor instruction sets, covering also inter—instruction effects.
Such effects depend on the processor state and the pipeline
behavior, and are related to the dynamic execution of as-
sembly code. The paper proposes a mathematical model of
the delays deriving from instruction dependencies and gives
a statistical characterization of such timing overheads. The
model has been validated on a commercial architecture, the
Intel486, by means of timing analysis of a set of benchmarks,
obtaining an error within 5%. This model can be seamlessly
integrated with a static energy consumption model in order
to obtain precise software power and energy estimations.

1. INTRODUCTION

The peculiarities of target application fields of embedded
computing (e.g., mobile systems), typically pose stringent
area and energy constraints. The current trend towards
high-levels of integration up to system-on—chip, is exacer-
bating the need of taking into account power requirement
during the early stages of the design as well as throughout
the entire verification flow. In addition, the penetration of
software within the typical hardware/software architectures
used in embedded systems, is steadily gaining importance
but unfortunately efficient power aware compiling and es-
timation techniques are still a research topic not yet ma-
ture for the EDA arena. Previous approaches [8][9][7] pro-
pose a characterization of the power consumption of a given
microprocessor based on the measurement of the average
current absorbed by the core during the execution of long
sequences of the same machine instruction. Power figures
are then associated with assembly instructions, leading to
an abstraction from architectural details of the micropro-
cessor. Such approaches, though, still suffer a lack of gen-
erality since a new set of measurements is needed when a
different processor is analyzed. A more general approach,

proposed in [1], abstracts from the architectural level by de-
termining a set of functionalities and by decomposing the
computational activity of each instruction in terms of these
functionalities. According to this model the energy absorbed
by each instruction is computed as the weighted sum of the
contributions of the functionalities. A tuning phase, based
on a limited set of experimental data, allows associating to
each functionality an average current absorption per clock
cycle. It is worth noting that the overall energy consump-
tion is strongly dependent on the number of cycles taken
for the execution of assembly instructions. In [1] the timing
is assumed to coincide with the nominal value reported in
the processor data—sheets. This timing data, being purely
static, are a sound starting point for a general energy model
but disregards the delays introduced by the interlocks arising
from a pipelined execution of the code. Limitations deriving
from a static analysis have been studied in [6] and a solution,
based on the models proposed in [8][9], has been presented.
The extended approach, though, does not address the prob-
lem of the lack of generality. The aim of this work is to
cope with the above limitations, providing a model capa-
ble of describing timing overheads due to inter—instruction
effects in a formal and general way. The advantages of a
static model with respect to a dynamic, simulation-based,
approach are evident. The proposed strategy is based on
a dynamic characterization—to be performed once and for
all—of a given instruction set aimed at producing statically
usable figures. To this purpose a sound and formally consis-
tent statistical model has been developed and verified both
theoretically and by comparison against actual timing mea-
sures. The methodology and related models are being im-
plemented in a co—design flow that will enable accurate and
efficient software power estimation [5]. This paper is or-
ganized as follows: Section 2 suggests a possible strategy
to extend the framework described in [1] and details the
mathematical model along with its statistical properties; the
tuning and validation methodologies adopted are described
in Section 3, where the experimental results obtained are
reported. Eventually, some conclusions are summarized in
Section 4.

2. PROPOSED MODEL

This section introduces the extension of the previously de-
veloped model [1], to cover also inter—instruction effects. For
the purpose of producing a widely applicable static esti-
mation of the timing overheads related to the interaction
between instructions, a taxonomy of a generic instruction



