
JASON Version 0.99

Introduction
First of all, why the name Jason ? Well, you all know the program Argo...

Argo was the name of the mythological ship that brought the Argonauts in

Colchis, searching for the Golden Fleece. The coxswain of the ship Argo was

the Greek hero Jason. So this program, which loosely relies on the technology

of Argo, has been named Jason.

And, if you don't like mythology, you can always read Jason as an acronym : Just

Another Ship-Owner Name :-)

The JASON Coding Scheme
The coding scheme of Jason is based on the ideas about IFK (Incremental

Frequency Keying) initially proposed by Steve Olney, VK2ZTO.

Basically, the information is coded in the absolute value of the difference

between two frequencies sent sequentially. This has the advantage of not

needing a precise initial tuning. A tuning error of a few Hertz is perfectly

acceptable.

Another characteristic is that, being the frequencies sent one at a time, you

don't need a linear amplifier. A class-D Mosfet TX will do nicely. The

frequency deltas can assume one of 16 different values. After sending one

tone, the next one is shifted by the appropriate amount, up or down depending on

the setting of the USB/LSB switch. With 16 deltas we need 17 slots (tones),

and any overflow causes a wraparound.

With 16 possible deltas, each baud (a baud is a change in the signal

transmitted, in this case a change in frequency) encodes 4 bits (called a

nibble), which are not enough for a reasonable alphabet. So we need two

nibbles for our alphabet.

But now a problem arises: how can we get character synchronization? In other

words, which is the high-order and which is the low-order nibble? I solved the

problem in the simplest way, which may be not the optimal one. I used the high

order bit of each nibble to encode this info. So the high-order nibble is of

the form '1xxx'b, while '0xxx'b is the low-order one. Here xxx stands for the

actual information transmitted.

So now there are 6 bits available to encode our alphabet, enough for 64 symbols.

I decided that my alphabet would be that that in ASCII code goes from x'20' (the

blank) to x'5f'. This allows the transmission of all the letters (upper case

only...), the ten digits, and practically all the punctuation symbols normally

used.

JASON Signals
Ok, this explains the encoding. What about the signaling? For this version

of Jason (but it may change in future versions), I chose the following

parameters for the standard speed setting:

• The default Rx and Tx center frequency is 800 Hz.

• Each one of the 17 slots is separated from the adjacent by 3 FFT bins, so

to guarantee some orthogonality.

• Each FFT bin is roughly 84 millihertz for the standard Normal speed

setting, so the slots are at a distance of roughly 252 millihertz, for a

total band occupancy of 4.038 Hz for the standard Normal speed setting.

• Each baud (each tone sent) lasts for roughly 11.89 seconds for the

standard Normal speed setting (the inverse of the FFT bin width)

• The throughput hence is about 2.5 characters per minute for the standard

Normal speed setting, hardly a speed champion, but it compares favorably

with QRSS.

The following table summarises the parameters for the various speed and turbo

on/off settings.

Speed Tone

Duration(S)

Tone

Spacing(Hz)

Bandwidth

(Hz)

Characters/Minute

(Turbo Off)

Characters/Minute

(Turbo On)

Slow 95.2 0.03 0.5 0.3 0.6

Normal 11.9 0.25 4 2.5 5

Fast 1.5 2 32 20 40

Options

The Options menu allows settings for a number of parameters.

 ==

• Select Audio Input…: Displays a Volume Control

Dialog for your Soundcard Device. Here you can

select the audio source input.

• Read from Wav file…: Displays an open file dialog

to allow audio data to be read from a .WAV file

(NOTE: Must have a sampling rate of 11025Hz).

• Read from JAS file…: Displays an open file dialog

to allow data to be read from a .JAS file. A JAS

file contains the down-sampled I and Q components

of the audio input.

==

• Jas Recording Setup: Displays a save file dialog

allowing the specification of the .JAS filename

and save location.

• Wav Recording Setup: Displays a save file dialog

allowing the specification of the .WAV filename

and save location.

==

• Center Frequencies…: Displays a dialog that allows

setting of the audio TX and RX frequencies (can be

set independently) in the range of 50Hz – 5000Hz

(the upper limit is set by the fixed 11025Hz

sampling rate – Nyquist). Should initially be set

to the default of 800Hz to allow easy netting.

• Speed ->: Displays a sub-menu to allow selection

of three different speeds as shown in the table

above (Slow/Normal/Fast). This setting must be

the same at each end of the communication path.

==

• Tx Port ->: displays a sub-menu allowing the selection of the three

output options as outlined in the Interfacing JASON section below.

• Tx Shift Mult. Factor…: In the case where the output audio is fed to a

frequency multiplying circuit (e.g., PLL) you need to enter the frequency

multiplying factor here to allow JASON to reduce the frequency shift

deltas to ensure that the correct shifts are present at the multiplied

frequency.

• Turbo Mode: An ON/OFF selection to enable/disable the TURBO mode.

Selecting Turbo mode causes the tone time to be half as long while still

maintaining the same tone shifts. This should only be done when the S/N

is good. This setting must be the same at each end of the communication

path.

===

• Tx LSB / Tx USB: Selection must match the correct sideband setting for

the Tx at your end.

• Rx LSB / Rx USB: Selection must match the correct sideband setting for

the Rx at your end.

===

• Native Decoder: Selects original decoder.

• KK7KA Decoder: Selects KK7KA decoder. Not selectable (greyed out) in

v0.99 as decoder has not been upgraded by KK7KA to accommodate speed

settings other than Normal.

===

• Show Frequency Peaks: Enables/disables a real-time readout of the

detected peak frequency between the yellow lines on receive.

• Jimi Hendrix Mode: Amplitude clipper intended to be used in the presence

of impulsive noise. For those not atune to Mr. Hendrix – he was famous

for a guitar sound produced by heavy clipping.

===

• Capture Trigger…: Displays a dialog that allows entry of a piece of text

that will trigger the beginning of text capture. Useful for leaving the

receiver running waiting for a signal to begin (or rise out of the noise).

The received screen text is saved in a file called “Jason.log” in the

directory where Jason.exe is located.

• Beacon Text from File: Type different beacon messages into separate text

files (.txt) and select a message from this open file dialog.

===

Capture Range
The program has a capture range of 1.5 times the bandwidth (my arbitrary

choice), i.e. slightly more than 6 Hz for the standard Normal speed setting.

The capture range can be easily positioned with the mouse. To do this, left-

click on the approximate center of the white lines that represent the received

signal. The capture window (the two yellow lines)will then positioned so that

its center will coincide with the frequency you have clicked on. Be warned

that any signal that falls, even slightly, outside the capture window will be

ignored by the decoding algorithm.

Frequency Stability Requirements
Using the standard Normal speed setting as an example, it is evident that the

combination of the Tx and Rx drifts must be such that, in each 11.89 sec.

interval, the frequency must stay in one single FFT bin, i.e. 84 millihertz.

Actually, a drift from -1 to +1 bin is tolerated, and accounted for, by the

program. But let's remain on the conservative side. If we translate this

into short term stability, where short term means a period of 10 minutes, we

compute that our oscillator must not drift, in each 10-minute interval, more

than 0.084 * 600 / 11.89 = 4.24 Hz (roughly). This means, at 136kHz, a

stability of 31 ppm is required, which doesn't look like a difficult figure to

achieve.

Interfacing JASON
How does Jason interface with the radio?

For reception, it's quite easy. Just bring the Rx audio into the sound card,

just as you do now with Argo and Spectran. Keep the audio level low. Jason works

best when the level bar on the left side of the panel is below 50 %.

You will see in the waterfall window two yellow lines. Tuning must be done so

that to ensure that the white lines of the received signal are always inside the

two yellow lines. The program discards all that falls outside. Fine-tuning is

possible with the mouse. Click on a signal line on the waterfall window, and its

frequency will be brought at the center of the yellow lines (the receiving

window). The Rx center frequency can also be adjusted with a menu choice.

For transmission, I have envisaged three different modes, to make interfacing

the easiest possible.

1. Parallel Port Output : via the Options menu, you can choose between LPT1
or LPT2. The code (ranging from 0 to 16) for the tone to be sent is

output, with the Strobe pin pulsed high for 100ms. The Tx condition is

indicated by the SelectInput pin being high.

2. Serial Port Output : via the Options menu, you can choose between COM1,
COM2 or COM3. The serial format is 9600 - 8N1. The code (ranging from 0 to

16) for the tone to be sent is output. The Tx condition is indicated by

the RTS being active. Via the Option menu, you can also choose the ZL1BPU

format, which is what is needed by Murray's AVR Atmel board

(http://www.qsl.net/zl1bpu/MICRO/EXCITER) Basically, an ASCII 'T' is sent

at the beginning of transmission and an 'X' at the end. Moreover, the

tones to be sent are identified by the three character sequence 'A00',

'A01'...'A09', 'A0A', A0B'....'A0F', 'A10' . No CR/LF used.

3. Audio Output : selectable via the Options menu.
If you choose this method, a note is generated using the sound card, with

a software implementation of a DDS, with a very long sine table (262144

entries), which ensures low distortion. The default center frequency

generated is 800 Hz, but can be selected via the Options menu in the range

50Hz to 5000Hz.

When using audio output, there is the possibility to specify a shift

multiplier factor (default = 1), which can be handy when generating the RF

using a PLL process that involves divisions. The output is in stereo

with left and right channels outputting the audio in quadrature (I and Q)

allowing feeding to a phasing-type SSB transmitter set-up. To maximise

sideband rejection of a phasing-type SSB transmitter a dialog for

adjusting the relative amplitude and phase of the two stereo channels (I

and Q) is available in the Options | Tx Port menu.

With these interfacing possibilities, it should be easy to hook-up a Tx to

Jason, both if you have the capability to up-convert the audio tone to the

working frequency, or if you use a DDS board, either with a parallel or serial

interface.

If you use a DDS board, you will need the following table to set up the

frequency to generate for the standard speed setting, depending on the code

output from Jason. Add the value in the table to the nominal value of the

carrier generated by the DDS.

Tone # Frequency (Hz)

0 797.981

1 798.234

2 798.486

3 798.738

4 798.991

5 799.243

6 799.496

7 799.748

8 800.000

9 800.252

10 800.505

11 800.757

12 801.009

13 801.262

14 801.514

15 801.766

16 802.019

These are also the default frequencies for the standard Normal speed setting

generated when using the audio output, provided that your sound card has an

exact sampling rate.

The encoding is taken care of by Jason; the DDS board task is only to generate

the appropriate frequency, according to the code received via the serial or

parallel port.

Frequency Accuracy for Using Audio Output Interface
A common method for interfacing is using a soundcard that is normally installed

in a PC as standard. It is useful to analyse the frequency accuracy and

stability requirements for JASON. JASON assumes an exact 11025Hz sample rate.

The initial frequency accuracy determines the ability to place the desired

signal in the input frequency range of JASON. The table below outlines

requirements for different speeds.

 Bin Width

(Hz)

Display

Range (Hz)

Capture

Range (Hz)

Required

Capture

Window

Accuracy

(Hz)

Required

Display

Window

Accuracy

(Hz)

Slow 0.0105 2.69 0.76 ±0.1 ±1

Normal 0.0841 21.5 6.06 ±1 ±9

Fast 0.673 172.3 48.45 ±8 ±70

The final frequency accuracy is the sum of the receiver frequency error and the

soundcard error. Sampling frequency accuracies of soundcard are usually much

poorer in terms of ppm than modern receivers. Typically soundcards sampling

frequencies are derived from a standard ±100ppm crystal oscillator while

receivers are typically ±5ppm. Working in favour of the soundcard is that it

is dealing with audio frequencies; therefore 100ppm @ 800Hz = 0.08Hz error.

For 5ppm accuracy receiver working at 134kHz the error is about 0.7Hz. So

worse error is 0.78Hz (say 0.8Hz). Short-term drift of both the soundcard and

receiver will be much less than the initial accuracy error. Therefore with

this combination it is possible to start JASON in the Fast mode without having

to manually adjust the signal to be within the capture window (assuming both

ends of the communication path are using gear of the same specifications). If

the operators are prepared to manually adjust the capture window then the signal

need only be within the display window requiring 8 times less initial accuracy

and so the Normal mode is also possible without further calibration for the

equipment accuracy described above.

Important Disclaimer: Older soundcards usually had ±100ppm accuracy for the

standard sampling rates of 44100, 22050, 11025 samples/second. However, the

newer soundcards that have 96kHz and 48kHz sampling rates will likely have

±100ppm for these two rates, but the standard rates of 44100, 22050, 11025 might

not have the same accuracy. For example a newer model external soundcard

might be off by about 64ppm for the 48kHz and 96kHz sampling rates, while the

sampling rates for 44100, 22050 and 11025 might be off by many ppm!!! Because

of this it is probably necessary to calibrate the soundcard if it is one of the

newer cards.

Methods for calibrating soundcards can be found on the Internet. As JASON has

no provision to enter the real sampling rate (it assumes exactly 11025Hz) you

can compensate by changing the Rx centre frequency. For example, if you find

your soundcard sampling frequency is high by 100ppm (i.e., 11026.103Hz), you

should enter a Rx centre frequency 100ppm low (e.g., 799.92001Hz for a nominal

800Hz). Of course, this does not account for any receiver errors.

WAV and JAS Recording
Incoming signal data can be saved for reading back at a later date. Two

formats are available – WAV and JAS. The WAV format is Mono, 11025Hz sample

rate, 16-bits per sample. The JAS format brings out the internal down

converted and down sampled I/Q data (much lower effective sampling rate) that is

normally fed to the internal JASON complex FFT algorithm before decoding.

Starting and stopping WAV and JAS recording is done via the ‘W’ and ‘J’ buttons

respectively that appear just to the right of the Options and About buttons when

JASON is in Rx mode. Note that if you haven’t setup the filenames for saving

to, you will be presented with a file save dialog when you first click these

buttons. So if you want to suddenly capture some interesting signals make sure

you have setup the filenames beforehand (See WAV and JAS recording setup in the

Options menu).

After recording a WAV or JAS file you can feed it back later to JASON via the

WAV and JAS reading modes in the Options menu.

The purpose of recording to a JAS file is that, compared to a WAV file, the size

of a JAS file at Slow, Normal and Fast speeds is 0.4%, 3% and 25% respectively

of a WAV file for the same record time. Handy for recording overnight sessions

without filling up your hard drive!!! Of course there is a catch. The JAS

file only records the signal passing into the internal complex FFT and decoder –

therefore you cannot change the centre frequency or speed if you discover that

the signal is outside the capture range or at the wrong speed when you play the

JAS file back later. So if you see a nice signal but some of it or all of it

falls outside the capture and/or if it is the wrong speed then too bad. Any

changes you make are ignored during playback. In comparison the WAV file

records the whole audio signal and when played back allows adjustment of centre

frequency and speed. So if you see a nice signal that is wholly or partly

outside the capture window and/or the wrong speed, you can make changes via the

Options menu and run the WAV again. The playback of the WAV file is just like

a speeded up version of real-time operation (so you have to be quick if you want

to click in the display window to centre the signal unless the file is long :-).

JASON Beaconing
For weak signal work it is useful to be able to repeat a message continuously to

allow other stations to wait for propagation conditions to be suitable for

reception. This can be done by typing in the text message to be repeated in

the typing input window enclosed in curly braces like this { text to beacon }.

For example { I2PHD IN JASON MODE }. Alternatively, a text file can be created

containing the beacon text (say in Notepad) and the file selected from the

Options menu.

I do hope this notes are sufficient to make you understand how Jason works, and

how to interface it with a Tx for LF work.

Should you have any questions, feel free to contact me at dibene@usa.net.

Enjoy,

Alberto I2PHD

