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Abstract

General wisdom deems strong computer-chess programs to be “brute-
force searchers” that explore game trees as exhaustively as possible
within the given time limits. We review the results of the latest World
Computer-Chess Championships and show how grossly wrong this no-
tion actually is. The typical brute-force searchers lost their dominance
of the field around 1990 when the null move became popular in micro-
computer practice. Today, nearly all world-class chess programs apply
various selective forward-pruning schemes with overwhelming success.

To this end, we extend standard null-move pruning by a vari-
able depth reduction and introduce what we call adaptive null-move
pruning. Quantitative experiments with our chess program DARK-
THOUGHT! show that adaptive null-move pruning adds a new member
to the collection of successful forward-pruning techniques in computer
chess. It preserves the tactical strength of DARKTHOUGHT while re-
ducing its search effort by 10%-30% on average in comparison with
standard null-move pruning at search depths of 812 plies. Moreover,
adaptive null-move pruning is easy to implement and scales nicely with
progressing search depth

1 Introduction

Early research in computer chess mostly tried to mimic the human game-
playing approach within computer systems [36]. The resulting chess pro-
grams relied on so-called “plausible” move generators. These were very
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knowledge-intensive and cut off bad-looking ( “implausible” ) moves at alllev-
els of the search tree, thus statically forward-pruning large parts of it. Then,
in the mid-1970s, brute-force searchers like TECH [19] and CHESS 4.X [43]
took the lead as soon as they reached search depths of 5 plies and more in the
middlegame. They routinely punished the tactical weaknesses of plausible
move generation and started their own reign.

Except for search extensions which increase the lookahead in important
lines of play (e.g. after checks or recaptures), typical brute-force programs of
this era featured no selectivity at all in the full-width parts of their searches.
The famous special-purpose chess machines BELLE [14, 15], DEEP THOUGHT
[30, 31], and HITECH [6, 7, 17] belong to this class. Together with the super-
computer program CRAY BLITZ [32] these brute-force searchers dominated
the computer-chess scene until roughly 1990. Because they were the first to
compete successfully against human chess masters, the brute-force paradigm
received broad publicity and media attention. This is probably the reason
for the unfortunate misconception that strong chess programs must be in-
herently boring brute-force searchers.

Forward-pruning chess programs dethroned the traditional brute-force
searchers in the early 1990s shortly after the advent of standard null-move
pruning [4, 5, 16, 20]. Since then, highly selective microcomputer programs
have won all official World Computer-Chess Championships as hosted by
the International Computer Chess Association in 1992, 1995, and 1999 [27,
44, 18]. We briefly sketch the achievements of the three champions below.

7th World Computer-Chess Championship (1992). Based on a sin-
gle 32MHz ARM processor, the 1992 champion THE CHESSM ACHINE
SCHRODER outclassed the special-purpose chess machine HITECH and
the massively parallel supercomputer program ZUGZWANG (then a
brute-force searcher on 1024x 16 MHz T800 transputers).

8th World Computer-Chess Championship (1995). Running on a

90 MHz Pentium, the 1995 champion FRiTZ beat DEEP THOUGHT 11
(the direct predecessor of IBM’s famous special-purpose chess ma-
chine DEEP BLUE) and the massively parallel sup ercomputer program
STARSOCRATES (employing an Intel Paragon with 1824x 66 MHz i860
CPUs). Furthermore, FRITZ outclassed the special-purpose chess ma-
chine HITECH as well as the massively parallel supercomputer pro-
grams FRENCHESS (using a Cray T3D with 256x 150 MHz Alpha-
21064 CPUs) and ZUGZWANG (now relying on a Parsytec GC with
96x 66 MHz PowerPC-601 CPUs).
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9th World Computer-Chess Championship (1999). Playing on a
550 MHz Pentium-III PC, the 1999 champion SHREDDER outclassed
the massively parallel supercomputer programs CILKCHESS (employ-
ing an SGI Origin 2000 with 256x 225 MHz R10000 CPUs), P.CON-
NERS (using a cluster of 180x 450 MHz Pentium-I1 PCs), ZUGZWANG
(relying on a Cray T3E with 512x 300 MHz Alpha-21164a CPUs),
and other programs running on symmetric multiprocessors with 4x
450 MHz Pentium-IT CPUs (FERRET, FRITZ, and JUNIOR).

The greatest disadvantage of selective pruning are the tactical weaknesses
which it incurs. Only those techniques that feature both low tactical risks
and substantial savings of search effort prove to be successful in practice.
Fortunately, such well-behaved selective pruning schemes do exist in com-
puter chess. Today, IBM’s DEEP BLUE [21, 28, 29] is probably the last
proponent of the genuine brute-force paradigm. The developers obviously
felt they had enough computing power to spare such that they could refrain
from taking any chances.

The work presented in this article aims to augment the collection of suc-
cessful forward-pruning methods in computer chess. We introduce our new
adaptive null-move pruning scheme and thoroughly evaluate its performance
on tactical test suites. Before concentrating on the fine details of adaptive
null-move pruning in Section 4, we elaborate on related work in Section 2
and on standard null-move pruning in Section 3.

2 Related Work

In his excellent overview of computer chess and search which covers develop-
ments up to the late 1980s, Marsland [33] mentions three statically selective
forward-pruning techniques that gained broad attention in the early days of
the field. Today, however, Birmingham and Kent’s razoring [8], Newborn’s
GAMMA algorithm [35], and Slagle’s marginal forward pruning [42] gener-
ate only little interest (if any at all) because their aggressive selectiveness
incurs too many tactical risks. Nevertheless, the fundamental ideas of these
methods still bear fruits. As shown by us for extended futility pruning and
limited razoring in [25], static forward pruning can work very well in prac-
tice if you confine it to the lower parts of the full-width search and add some
basic safety precautions.

Another long-standing pruning scheme continues to enjoy wide-spread
use in chess programs although there does not exist much published material
about it. Slate and Atkin [43] introduced a limited form of what we call
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normal futility pruning in the early 1970s. Then, Schaeffer [39] extended
the underlying idea in the mid-1980s and we re-explained it in more detail
in 1998 [25]. Schaeffer also made some quantitative measurements that
illustrated the practical effectiveness of the scheme. Ye and Marsland [45]
later confirmed Schaeffer’s findings by their own independent experiments
with normal futility pruning in Chinese chess.

The first reports about successful experiments with the null move [4, 5,
20] initiated a renaissance of selective forward-pruning in computer chess
around 1990. Null-move pruning exhibits only minor tactical weaknesses
while reducing the overall search effort substantially. Moreover, it scales
well with progressing search depth. Null-move pruning bases the cutoff
decisions on dynamic rather than static criteria at the respective nodes.
To this end, it speculatively replaces normal searches with much cheaper
searches of reduced depths (see Section 3). The spectacular successes of null-
move pruning in microcomputer practice made it one of the most popular
ingredients of modern chess programs.

Bjornsson and Marsland [9, 10] proposed multi-cut alpha-beta pruning
and variable-bound null-move pruning as further forward-pruning methods
in computer chess. Unfortunately, they only present the results of a few
test games as qualitative empirical evidence for the promise of their new
techniques. The rather balanced results of these test games do not provide
convincing support for the promise in our opinion. In order to quantify
the real benefits of their new schemes, Bjornsson and Marsland ought to
perform much more extensive experiments with them. Last but not least,
in computer Othello the dynamic forward-pruning schemes PROBCUT [12],
MuLTI-PrROBCUT [11], and improvements of them excel. But up to now,
there are no publications about either PROBCUT or MULTI-PROBCUT in
computer chess.

3 Standard Null-Move Pruning

The brute-force paradigm does not allow for any forward pruning in the
full-width part of the search. Beyond the full-width horizon during the
so-called “quiescence search”, however, even genuine brute-force programs
perform static forward pruning without hesitation. Otherwise, the number
of quiescence nodes explodes so quickly that the whole search gets stuck at
shallow full-width depths. As soon as traditional brute-force searches with
extensions approach full-width depths of 9-10 plies in the middlegame, the
same phenomenon re-emerges at the full-width level. This is exactly where
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forward pruning steps in again. It increases the scalability of the search at
all levels if we abandon the pure brute-force paradigm.

Null-move pruning is a dynamic forward-pruning scheme that generates
selective cutoffs at nominal full-width nodes where the side-to-move is not in
check [5, 16, 20]. Even the recursive application of null-move pruning along
a single search path exhibits only minor tactical weaknesses while reducing
the overall search effort substantially. Furthermore, it scales nicely with
search depth as the savings increase and the tactical shortcomings diminish
at higher depths. The significant savings of null-move pruningspring mostly
from the depth reduction of the null-move searches. Given the additional
effort which unsuccessful null-move searches waste, the performance gains
of null-move pruning in practice are all the more remarkable. Regarding the
depth reduction of null-move searches, the accepted standard recommend ed
the usage of a constant depth-reduction factor R = 2. Independent studies
by several researchers confirmed that recursive null-move pruning with R =
2 behaved markedly better than both the too conservative R = 1 and the
too aggressive R = 3.

We verified the standard recommendation for our own master-strength
chess program DARKTHOUGHT [26] which successfully participated in all
official ICCA world championships since 1995. DARKTHOUGHT is a fast
yet sophisticated alpha-beta searcher using PVS/NEGAScouT [13, 37] with
state-of-the-art enhancements such as normal and extended futility prun-
ing [25, 39, 43], internal iterative deepening [2, 41], dynamic move order-
ing (history+killer heuristic) [1, 19, 38, 40, 43], selective extensions [2, 3],
interior-node recognizers [24], knowledgeable endgame databases [23], and
an extended transposition table [34, 43]. The program routinely reaches
search depths of 11-13 pliesin the middlegame at tournament time-controls.
DARKTHOUGHT already generated very slim search trees while using stan-
dard recursive null-move pruning with R = 2. During the World Micro-
computer-Chess Championships in 1995, 1996, and 1997, DARKTHOUGHT
always searched among the smallest trees of all participating programs as
confirmed by private and public discussions with the authors.

Table 1 lists the results of our quantitative null-move experiments with
all 2180 positions from the well-known tactical test suites “Encyclopedia of
Chess Middlegames” (ECM, 879 positions), “Win at Chess” (WAC, 300 po-
sitions), and “1001 Winning Chess Sacrifices” (WCS, 1001 positions) as pub-
licly available on the Internet. Three different versions of DARKTHOUGHT,
employing recursive null-move pruning with R = 1, R = 2, and R = 3 re-
spectively, searched the 2180 positions to fixed depths of 8, 10, and 12 plies
each (see Appendix A for a detailed description of the exact experimental
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setup). The relative numbers of nodes searched and positions solved show
that the standard recommendation R = 2 clearly outperforms the other
constant depth-reduction factors for DARKTHOUGHT.

Test R=1 R=1 R=2 R=2 R=3 R=3

Suite A Nodes A Sol #Nodes #Solved A Nodes | A Sol
ECM-08 +96.29% +8 1,232,004,798 552 / 879 —-23.23% —-21
ECM-10 +198.76% +3 8,823,781,692 642 / 879 —33.55% —17
ECM-12 +304.35% +1 83,443,531,950 704 / 879 —44.50% —11
WAC-08 +101.63% 0 146,094,041 285 / 300 —27.88% —4
WAC-10 +205.97% 0 946,867,509 296 / 300 —36.06% -2
WAC-12 +317.48% 0 8,998,551,515 296 / 300 —48.04% -2
WCS-08 +100.02% 0 750,804,397 | 841 / 1001 —27.63% —10
WCS-10 +201.13% +5 5,398,696,585 | 866 / 1001 —36.34% —11
WCS-12 +295.46% +2 52,801,555,626 | 874 / 1001 —42.00% -8
Sum—08 +97.97% +8 2,128,903,236 | 1678 / 2180 || —25.10% -35
Sum-10 || +200.05% +8 15,169,345,786 | 1804 / 2180 || —34.70% -30
Sum-12 | +301.93% +3 || 145,243,639,091 | 1874 / 2180 || —43.74% -21

Table 1: Performance of Null-Move Depth Reduction R =1, 2, 3.

Despite the additional savings in search effort, R = 3 does not represent
a viable alternative because of its severe tactical deficiencies. The numbers
of solutions missed by R =3 in comparison with R = 2 consistently exceed
the standard errors of the overall R = 2 results by far. We calculate the
absolute standard error SE = n*+/p * (1 — p)/n for a score of k solutions in
n test positions by multiplying its relative counterpart with n wherep = k/n.
For the overall R = 2 results as listed in rows “Sum-08”, “Sum-10", and
“Sum—12” of Table 1, the SE formula yields SEs = 20, SE1o = 18, and
SE15 = 16 at the tested search depths of 8, 10, and 12 plies. This makes
it highly unlikely that the observed decline in tactical ability of the R = 3
version was just random noise.

4 Recursively Adaptive Null-Move Pruning

The significantly lower search effort of recursive null-move pruning with
R = 3 is a tempting incentive to look for possible ways in order to exploit
it without compromising the tactical strength of R = 2. In this respect,
variable rather than constant depth reduction for null moves quickly springs
to mind as an intuitive and straightforward idea. Other researchers already
speculated about such schemes in the past [16, 20]. They suggested to in-
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crease the depth reduction of null-move searches with decreasing distance
from the full-width horizon. In particular, Donninger [16] hinted at using
R = 2 in the upper parts of the full-width search and R = 3 in the lower
parts thereof. Unfortunately, we do not know of any publications that re-
port about the proposed method of variable null-move depth reduction and
experiments with it in more detail. Hence, we performed the necessary tests
and measurements ourselves. To our disappointment, all trials with values
of R ranging from 2—4 and various different thresholds of remaining search
depth at which to vary R (ranging from 2-8) failed miserably. None of those
parameter combinations improved the tactical abilities of DARKTHOUGHT
beyond the unacceptable level of the plain R = 3 constant (see Table 1).

Since then we strongly doubt the practical usefulness of variable null-
move depth reduction with increasing values of R towards the full-width
horizon. Instead, we started to consider the reverse strategy of variable
depth reduction with decreasing values of R in the lower parts of the full-
width search. This obviously lowers rather than raises the degree of selectiv-
ity with increasing distance from the root position which not only contradicts
general wisdom but also our prior experiences with other forward-pruning
techniques. Therefore, we did not give the reversed scheme much chances at
first and even judged it as counter-productive. To our utter surprise, how-
ever, already the very first test implementation of our new adaptive method
for null-move depth reduction turned out to be an overwhelming success.
Meanwhile, our proven implementation of adaptive null-move pruning in
DARKTHOUGHT easily combines the merits of both R = 2 (tactical safety)
and R = 3 (reduced search effort) as detailed in Section 4.2.

4.1 Theory

The core idea of our adaptive scheme is to apply a reduction factor of R =3
at full-width nodes with a remaining search depth of more than 6 plies and a
reduction factor of R = 2 otherwise. We denote this specific method of adap-
tive depth reduction by R = 332. Qualitative and quantitative empirical
measurements showed that a remaining depth of 6 plies was clearly the best
threshold for switching from R = 3 to R = 2 in DARKTHOUGHT. While
lower thresholds did not provide enough tactical safety, higher thresholds
did not gain any and thus only wasted precious search effort. In addition
to the remaining search depth, the latest version of DARKTHOUGHT also
takes the material situation at the respective node into account when de-
ciding about the actual depth reduction R,qy: = f(depth,material). We
augmented the scope of our adaptive method by the number of pieces on
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the chess board because we discovered that the bare core idea applied null
moves too aggressively in endgames with reduced material. Our revised and
fine-tuned formula for the calculation of R,gy now restricts the application
of R = 3 to nodes with a remaining search depth of more than 8 plies if the
maximal number of pieces per side drops below three. [Remark: For the sake
of convenience, we define R = 3%2 to equal the fine-tuned formula from here on.]

Fine-Tuned Adaptive Null-Move Depth Reduction

R 2 if (depth < 6) or ((depth < 8) & (max_pieces_per_side < 3))
vt 3 if (depth > 8) or ((depth > 6) & (max_pieces_per_side > 3))

Despite our initial misjudgement, we quickly understood why the “re-

versed” adaptive depth reduction works so well. Our research suggests
that there is an important distinction between dynamic and static forward-
pruning schemes regarding their preferred degrees of selectivity in differ-
ent parts of the full-width search. While static forward pruning generally
thrives on low selectivity in the upper parts and increased selectivity in the
lower ones, dynamic forward pruning excels with the exact opposite. Hence,
dynamic forward pruning prefers high remaining search depths and static
forward pruning low ones for the application of aggressive selectivity. This
allows both styles of forward pruning to sustain tactical safety. Our adaptive
depth reduction simply exploits the dynamic nature of null-move pruning in
this very respect.

Building on the explanations above, we illustrate the crucial algorith-
mic aspects of adaptive null-move pruning in Figure 1. There, we present
the skeleton of a selective search function that performs adaptive null-move
searches with a minimal window centered around the value of beta at the
respective node. It returns the actual score in fail-soft manner if the null-
move search fails high. We intentionally omitted the details of how to store
the final search result in the transposition tables in order to keep the code
fragment focused. Still, the skeleton tries to avoid superfluous null-move
searches that do not really promise to cut off as decided by the function
trynull (). Because null moves do not make much sense if the side-to-
move is in check or the opponent executed a null move directly before, we
further guard the null-move searches by the predicates !check(move) and
null okay().
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/* macro definition of the adaptive null-move depth reduction */
#define R_adpt (node, depth) ( \

2 + ((depth) > (6 + ((max_pieces_per_side(node)<3) 7 2 : 0))))
/* recursive PVS /NegaScout search function for nominal full-width nodes */

int search(int alpha, int beta, int move, node parent, int depth) {
node current; int null score, tt_hit; tt_entry tt_ref;

/* execute the opponent’s move */

make move(parent, move, &current);

/* determine if and how to extend the search at the current node */

depth += extensions(move, current, depth);

/* probe the transposition tables at the current node */

tt_hit = probe_transposition tables(current, depth, &tt_ref);
if (tt_hit) { ... } else { ... }

/* try the adaptive null-move search with a minimal window around */
/* “beta” only if it is allowed, desired, and really promises to cut off */

if (!'check(move) && null_okay(current, move)
&& try_null(alpha, beta, current, depth, move, tt_ref)) {

null _score = -search(-beta, -beta + 1, null move, current,
depth - R_adpt(current, depth) - 1);

/* test for a potential fail-high null-move cutoff */
if (null_score >= beta) return null_score;

}

/* now continue as usual at the current node (e.g. recursive PVS part) */

Figure 1: Selective Search with Adaptive Null-Move Pruning.
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4.2 Practice

DARKTHOUGHT employed adaptive null-move pruningduring the 9th World
Computer-Chess Championship which took place in Paderborn (Germany),
June 1999. It finished the tournament on shared 5th place as 6th of 30 partic-
ipants and earned the rank of vice champion in the microcomputer category.
Hence, adaptive null-move pruning already demonstrated its practical value
with a successful real-life performance.

Moreover, this championship version of DARKTHOUGHT played hundreds
of self-play test games and even more test games versus strong commercial
chess programs at tournament time-controls (including the latest versions
of numerous world champions of the 1990s).? The self-play games pitted
DARKTHOUGHT with adaptive null-move pruning, extended futility prun-
ing, and limited razoring against the normal version with R = 2 null-move
pruning but neither extended futility pruning nor limited razoring. The
detailed results of these self-play matches are published elsewhere [22]: in
100 games at a time control of 60 moves in 90 minutes, for instance, the
aggressively pruning version of DARKTHOUGHT scored 67.5% against the
normal R = 2 one. The self-play games and the test games versus strong
commercial chess programs taken together strongly support the practical
usefulness of adaptive null-move pruning in serious game play.

We quantified the savings in search effort of adaptive null-move pruning
by letting DARKTHOUGHT with recursive application of null moves and our
fine-tuned adaptive R = 352 search all 2180 positions of ECM, WAC, and
WCS to nominally fixed depths of 8, 10, and 12 plies respectively (see Ap-
pendix A for a detailed description of the exact experimental setup). Table 2
compares the results of these test runs with the according numbers for the
standard R = 2 version of DARKTHOUGHT which we already listed in Ta-
ble 1. The data shows that even at fixed search depths adaptive null-move
pruning exhibits the same tactical strength as standard null-move pruning
with R = 2. Yet the adaptive scheme reduces the search effort by 10%-30%
on average at search depths of 8-12 plies. Moreover, the relative overall
savings as counted in number of nodes visited scale nicely with progressing
search depth. They increase linearly from 8.5% at a fixed search depth of 8
plies to 30.5% at a fixed search depth of 12 plies.

Our long-standing experience with the application of adaptive null-move
pruning in DARKTHOUGHT confirms its tactical safety. Up to now we do
not know of any position where R = 3§2 delays the discovery of the key
move by the search for more than a single ply as compared with R = 2.

*Please find the complete move lists of the latter on our WWW pages.

10
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Test R=2 R=2 R=3%2 R =3%2
Suite #Nodes #Solved A Nodes A Solved
ECM-08 1,232,004,798 552 / 879 —7.31% 0 0.00%
ECM-10 8,823,781,692 642 / 879 —18.14% || +1 | +0.16%
ECM-12 83,443,531,950 704 / 879 -33.79% || +1 | +0.14%
WAC-08 146,094,041 285 / 300 —11.78% 0 0.00%
WAC-10 946,867,509 296 / 300 —23.65% 0 0.00%
WAC-12 8,998,551,515 296 / 300 —38.13% 0 0.00%
WCS-08 750,804,397 | 841 / 1001 —-10.89% || +2 | +0.24%
WCS-10 5,398,696,585 | 866 / 1001 —-19.93% || -1 | —-0.12%
WCS-12 52,801,555,626 | 874 / 1001 —27.06% || +1 | +0.11%
Sum—08 2,128,903,236 | 1678 / 2180 —8.88% || +2 | +0.12%
Sum-10 15,169,345,786 | 1804 / 2180 || —19.12% 0 0.00%
Sum-12 || 145,243,639,091 | 1874 / 2180 || —31.61% | +2 | +0.11%

Table 2: Performance of Null-Move Depth Reduction R =2 vs. R = 352.

Fortunately, such delays are extremely rare in practice. The solution rates
of adaptive null-move pruning from Table 2 suggest that the exceptional
delays are at least neutralized in general by equally exceptional cases of
acceleration where R = 3732 makes the search lock onto key moves earlier
than R = 2. Surprising as it may seem at first glance, this “acceleration
phenomenon” is easy to verify because it actually happened with all selective
forward-pruning schemes which we ever tried.

Finally, we elaborate on another interesting observation concerning the
scalability of adaptive null-move pruning. Table 3 contrasts the test-suite
results of DARKTHOUGHT using our fine-tuned adaptive R = 332 with
those of DARKTHOUGHT employing a constant R = 3. The data reveals
that the relative differences in search effort as counted in number of nodes
visisted remain almost constant at 17%—19% for these two program versions
regardless of search depth. Consequently, adaptive null-move pruning scales
as well as R = 3 null-move pruning at fixed search depths of 812 plies
in DARKTHOUGHT. This provides further empirical evidence for our notion
that adaptive null-move pruning combines the best of both R =2 and R =3
null-move pruning. In our opinion, the difference in search effort between
R = 3%2and R = 3 is fairly low given the large number of solutions which
R = 3 missed. While retaining the same level of tactical strength as R = 2,
the savings in search effort of the adaptive scheme do not only increase and
scale like those of R = 3 with additional search depth but they also come
close to them.

11
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Test R =3%2 R=3%2 R=3 R=3

Suite #Nodes #Solved A Nodes A Solved
ECM-08 1,141,945,247 552 / 879 —-17.18% || —21 | —3.80%
ECM-10 7,223,147,693 643 / 879 —18.83% || —18 | —2.80%
ECM-12 || 55,247,962,504 705 / 879 -16.18% || —12 | —-1.70%
WAC-08 128,884,163 285 / 300 -18.25% —4 | —1.40%
WAC-10 722,933,343 296 / 300 -16.25% -2 —0.68%
WAC-12 5,567,403,822 296 / 300 —16.01% -2 —0.68%
WCS-08 669,041,798 | 843 / 1001 —18.78% || —12 | —-1.42%
WCS-10 4,322,736,356 | 865 / 1001 -20.50% || —10 | —1.16%
WCS-12 || 38,513,454,674 | 875 / 1001 —-20.48% -9 | —1.03%
Sum—08 1,939,871,208 | 1680 / 2180 | —17.80% || —37 | —2.20%
Sum-10 || 12,268,817,392 | 1804 / 2180 || —19.26% || —30 | —-1.66%
Sum-12 || 99,328,821,000 | 1876 / 2180 || —17.73% || —23 | —1.23%

Table 3: Performance of Null-Move Depth Reduction R =3%2 vs. R = 3.

5 Conclusion

Our brief historical overview of search paradigms in computer chess argued
that the pure brute-force searchers lost their traditional dominance of the
field around 1990. Since then selective forward-pruning techniques have
again taken the lead, guided by the spectacular achievements of the null
move in microcomputer practice. Today, nearly all world-class chess pro-
grams apply various clever forward-pruning schemes with good success.

This article adds adaptive null-move pruning to the collection of suc-
cessful forward-pruning methods in computer chess. Extensive experiments
show that adaptive null-move pruning preserves the tactical strength of our
sop histicated and tournament-proven chess program DARKTHOUGHT while
reducing its search effort by 10%-30% on average in comparison with stan-
dard R = 2 null-move pruning at search depths of 8-12 plies. Furthermore,
adaptive null-move pruning and its savings in search effort scale equally well
with search depth as those of the extremely risky R = 3 scheme. Overall, our
fine-t uned implementation of ad aptive null-move pruning in DARKT'HOUGHT
combines the merits of both standard R = 2 and aggressive R = 3 null-move
pruning in a convincing way. In view of its tactical safety and the neatly
reduced search effort, we deem it quite remarkable that adaptive null-move
pruning is very easy to implement.

During the course of our research on adaptive null-move pruning we also
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discovered an important distinction between dynamic and static forward-
pruning schemes regarding their preferred degrees of selectivity in different
parts of the full-width search. While static forward pruning generally thrives
on low selectivity in the upper parts and increased selectivity in the lower
ones, dynamic forward pruning excels with the exact opposite. Hence, dy-
namic forward pruning rather prefers high remaining search depths for the
application of aggressive selectivity. Their specific preferences allow both
styles of forward pruning to sustain the desired degrees of tactical safety.

A Experimental Setup

e Test suites “Encyclopedia of Chess Middlegames” (ECM, 879 posi-
tions), “Win at Chess” (WAC, 300 positions), and “1001 Winning
Chess Sacrifices” (WCS, 1001 positions) as available on the Internet,

e DARKTHOUGHT as of March 31, 1998 with 8 M transposition-table
entries (4M per side), 1M King hash-table entries (512K per side),
and 512K Pawn hash-table entries,

e Digital Unix 4.0d program development tools and operating system,

e 600MHz Alphal.X164 workstation (600MHz DEC Alpha-21164a CPU,
8KB/8KB on-chip I/D L1 caches, 96 KB unified on-chip L2 cache, 2MB
unified off-chip L3 cache, DEC LX 164 mainboard, 2x128MB SDRAM
DIMMs = 256 MB RAM).
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