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Appendix C

Wavelet-Based Image Coding Algorithms 

“Usus magister est optimus”

(Cicerone, De oratore, I, 4, 15)

C.1. Introduction

Multi-frequency decomposition schemes and subband coding have come a long way over the years. Actually Crochiere, Webber and Flanagan introduced them in 1976 for speech signals with the basic idea to decompose the input signal into a number of frequency bands using a bank of band pass filters; in the same year Croisier, Esteban and Galand introduced the Quadrature Mirror Filters to allow alias-free reconstruction of the signals. Vetterly in 1984 extended the application of QMF to two-dimensional and multi-dimensional signals; subsequently Woods and O’Neil in 1986 presented the first image coder using subband coding and Differential Pulse Code Modulation, whereas Gharavi and Tabatabai in 1988 proposed another subband coding scheme using unequal-sized subbands. Since then a variety of subband coders capable of high quality encoding at low bit rates have emerged; a good number of multiresolution approximation schemes emerged independently. However wavelet theory, mainly discrete wavelet transform, has been recognised as a unifying framework.

C.1.1. Selection of Coders

In this appendix it will be presented a group of wavelet based image coding algorithms and methods studied between 1993 and 1998, beginning with Shapiro’s EZW
. EZW method is the first high level wavelet-based method that gives really good improvement from the compression point of view, compared to the DCT-based
 coding methods, mainly JPEG. It also introduces the Embedded-coding feature, important for some actual applications. The other two important methods analysed and presented in this appendix are the Said and Pearlman’s SPIHT
 and the Sriram and Marcellin’s ECTCQ
, both studied around 1995-96; the first one because it improves on the EZW compression ratio and quality features using the same zero-tree structure based idea. The second one is studied to gain an idea of the quality of the trellis coded quantization. The other four methods presented around 1997 are important for their competitive coding performance; some are important from the compression ratio and quality point of view, others from the coding complexity and hardware simplicity point of view. All seven algorithms show results based on tests developed with the same kind of test images, which will be presented later, in order to have a comparison between the PSNR results obtained.

Some other interesting algorithm found in literature are not reported in this appendix because their results are not obtained with these test images and their performance could not be compared with the methods illustrated above. We decided to restrict the presentation of coding algorithms to algorithms studied before 1997; this is because more recently the idea of a new efficient image compression standard, JPEG-2000, began to become important with the call for contributions for JPEG 2000 of March 1997. Until that moment the research on wavelet based coding methods continued from the point of view of an improvement in the quality and the compression ratio; from that moment other important features, proposed in the JPEG 2000 standard, such as embedded bitstream and scalability became important. For that reason the research took another direction and other kinds of coding methods were introduced; these methods will be studied in a following appendix, dedicated to JPEG 2000 standard.

C.1.2. Different Features

In the search for new algorithms some major problems are:

· To obtain the best image quality visually and non-visually for a given bit rate,

· To obtain the best compression ratio for a given quality parameter such as PSNR,

· Implement the prefixed tasks in an embedded way, so that lower bit rate encodings of the image are embedded at the beginning of the bitstream.

These problems are important for progressive transmission and multimedia applications.

C.1.2.1. Quantization 

Wavelet-based coders for images have been implemented with both scalar quantization and vector quantization during recent years, with different interesting features; sometimes the quantization could be deployed by successive approximations. Another possible solution is the Trellis-coded quantization, this is an effective scheme for quantizing sources with moderate complexity. All the different quantization methods have a common problem that appears with coarse quantization: the distortion of the image structure. To exploit both the spatial and the spectral localisation properties of the DWT a good quantization scheme is the SASAQ
.

C.1.2.2. Perceiving

Another important objective for a generic image coding system is to encode images in such a manner that coding distortions are not perceptible, by a human observer. One way to achieve this objective is to understand better the psychophysics of the HVS
. Important studies show that the sensitivity of the human eye in perceiving distortion is different for different spatial frequencies. It is possible to use this information in a subband coder by perceptually weighting each subband, coordinating the sensitivity of the human eye to the energy in that subband. Various ideas are used in the different coding algorithms to arrive at the most appropriate weight, for example as shown in [S.4]. A major effect of perceptual weighting is to emphasise low frequencies compared with high frequencies; a lot of coding algorithms use this feature to improve their performance. It is possible with this effect to obtain a small drop in PSNR values, growing when the encoding rate decreases. Comparing the images with and without perceptual weighting it is possible to see that even if it is difficult to identify improvements in perceptual quality when used 0.5 bpp, at 0.25 bpp the images from the perceptually weighted systems look much better than the others. 

C.1.2.3. Colour Image Coders

It is well known, as seen in previous chapters, that the three colour planes, red, green and blue, are highly correlated. To exploit this redundancy it is common practice, within coder systems, to transform these planes into the three components luminance Y, chromanance Cb and Cr. Among other features, this transformation has the added advantage of being compatible with monochrome images, by the use of the Y component. It is also known that the human eye is less sensitive to degradation in the chromanance components than to degradation in the luminance component. Some coding algorithms exploit this feature, encoding the three components differently; for example by removing some or all of the high frequency subbands, or using different thresholds for the different subbands associated with the chromanance components.

C.1.2.4. Embedded Coding

An Embedded code represents a sequence of binary decisions that distinguishes an image from a “null” image; the bits are in order of importance, so that all the lower rate codes are embedded at the beginning of the bitstream. For that reason an encoder can terminate the encoding at any point allowing for a target rate or a distortion metric to match exactly, thus providing the best representation of the image achievable within its framework. For this reason some target parameters have to be monitored, such as bit count, during the encoding phase and when this parameter is met the encoding should be stopped. In the same way the decoder can cease to decode the embedded bitstream at any point producing a reconstruction image corresponding to all images of lower-rate encodings. To understand better the embedded coding a similarity with the binary finite-precision representation of a real number could be found: for each digit added to the right of the string of binary digits, the more precision is achieved. Also in this way the “encoding” can cease at any time, providing the best representation of that real number. It should be pointed out, however, that for a given rate or given distortion parameter a non-embedded code is usually more efficient than an embedded code, because it is free from the constraints imposed by the embedding.

C.1.3. Standard images

Before beginning the analysis of the different coding algorithms and the results obtained, we want to show the standard images used in the tests. This will be useful to explain and evaluate the methods reported in the following sections, and to compare the results shown. As shown in Figure C.1, the test images are greyscale, with 8 bit/pixel of depth, 512 512 sized for a size of about 768 Kbytes uncompressed. The test images show different pictures, a view of houses from a hill and a landscape (“Goldhill”), a face of a girl with hat and a feather (“Lena”), and a seated girl with a foulard and a room with table and tablecloth (“Barbara”). All three images are important and widely utilised within various publications. They contain a variety of textures and complex patterns, like the feather, the foulard, the tablecloth and the roof of the houses; for that reason they are useful to show and compare the quality of the different reconstructed images.
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Figure C.1 : Test images.

C.2. Embedded Zero-tree Wavelet Coding

C.2.1. Introduction

Image compression techniques usually grow computationally more complex with increasing compression ratio, but the image coding technique called Embedded Zero-tree Wavelet, EZW, introduced in 1993 by J. M. Shapiro in [S.2] interrupted the simultaneous progression of effectiveness and computational complexity; this technique not only is competitive in performance, but it is also extremely fast in execution, and it produces an embedded bitstream generated in order of importance. EZW also produces compression results competitive with the main contemporary compression algorithms on standard test images; it is based on these four key concepts:

· DWT or Hierarchical Subband Decomposition,

· Prediction of absence of significant information across scales by exploiting the self-similarity inherent in images,

· Entropy-coded successive-approximation quantization,

· Lossless data compression achieved by adaptive arithmetic coding.

C.2.2. Features

To understand better the EZW algorithm the following features could be seen:

· Discrete Wavelet Transform, which provides as seen in some previous chapters and appendices, a compact multi-resolution representation of the image,

· The Zero-tree Coding, that will be explained in more detail later, which provides a compact multi-resolution representation of significance maps; these binary maps indicate the positions of the significant coefficients. With the zero-tree structures a successful prediction of the insignificant coefficients across the different scales is obtained,

· Successive Approximation, which provides a compact multi-precision representation of the significant coefficients and facilitates the embedding algorithm,

· A Prioritisation Protocol, which helps to determine the ordering of importance; it is determined by precision, magnitude, scale and spatial location of the wavelet coefficients. In this protocol the larger coefficients are considered more important than smaller coefficients regardless of their scale,

· Adaptive Multilevel Arithmetic Coding, which provides a fast and efficient method for entropy coding strings of symbols.

The algorithm runs sequentially and stops whenever a target bit rate or a target distortion is met.

C.2.3. Zero-tree of Wavelet Coefficients

The second important concept (the first being the discrete wavelet transform discussed in the previous chapters and appendices) is the zero-tree of wavelet coefficients, actually with this an important aspect of low bit rate image coding is explored. This important aspect is the coding of the positions of the coefficients that will be transmitted as non-zero values. During the coding usually we have to spend a large fraction of the bit budget on encoding the significance map, more so than the encoding of non-zero values, especially at low target rates. For this reason a big improvement in encoding this map translates into a corresponding gain in compression efficiency. 
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Figure C.2 : Parent-child dependencies of subbands (left) and scanning order of the subbands for encoding a significance map.

To improve the compression of significance maps of WCF a new data structure is defined, called “Zero-tree”. As seen previously a wavelet coefficient x is said to be insignificant with respect to a given threshold of value T, when its modulus, is lower than the threshold value T. The zero-tree is based on the hypothesis that if a WCF at a coarse scale is insignificant with respect to a given threshold T, then all the WCF of the same orientation in the same spatial location at finer scales are likely
 to be insignificant with respect to the threshold T. In hierarchical sub-band systems, like EZW, every coefficient at a given scale, called “parent”, can be related to a set of coefficients, called “children” and to a set of all the coefficients, called “descendants”. All these coefficients correspond at the same spatial location. The parent-child dependencies is explained in Figure C.2. As the wavelet tree descends, all parents have four children, with the exception of the lowest frequency sub-band in which each parent node has three children. In the algorithm the coefficient scanning is performed in such a way that no child node is scanned before its parent, following the path in Figure C.2.

C.2.4. Definitions and Symbols

We now have to give some definitions to understand better concepts better:

· Given a threshold T, a WCF x is said to be an element of a zero-tree for that threshold T if itself and all of its descendants are insignificant with respect to T,

· An element of a zero-tree for a threshold T is called a zero-tree root if it is not the descendant of a previously found zero-tree root for T; a zero-tree root is encoded with a special symbol to show that the insignificance of the coefficients at finer scale are completely predictable. 
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Figure C.3 : Flow chart for encoding a coefficient of the significance map.

The significance map is efficiently represented as a string of symbols from a four-symbol alphabet, which will be then entropy coded:

· Zero-tree Root,

· Isolated Zero, which means that the coefficient is insignificant but it has some descendants,

· Positive Significant,

· Negative Significant.

A three-symbol alphabet with Zero-tree Root, Isolated Zero and Significant is feasible, but the four-symbol alphabet is more appropriate from the embedding point of view. In Figure C.3 the flow chart for the decision of which symbol to associate with an input coefficient is shown. Zero-tree coding reduces the cost of encoding the significance map using self-similarity, given that the occurrences of insignificant coefficients are not independent events. The main difference between zero-tree coding and coding methods, such as run-length, used in more traditional techniques, is that the zero-tree symbol is a single “terminating” symbol applied to the whole tree-depth, whereas run-length encoding requires a symbol for each run-length which must be encoded; the EOF, end of block, symbol used in JPEG, that shows that all remaining DCT coefficients in the block are quantized to zero, is closer to the zero-tree in spirit, even if it is not as good from the compression point of view. The zero-tree, which represents a hierarchical “ divide and conquer” approach to searching for one or more smaller areas of insignificance, can isolate interesting non-zero details by immediately eliminating large insignificant regions from consideration; in this way a large fraction of insignificant coefficients are efficiently encoded as part of the zero-tree. One common aspect used by a lot of models to describe images, is the ”decaying spectrum”. The basic hypothesis of EZW - insignificant coefficients at coarse scale lead to all insignificant descendants - can be interpreted as an extremely general image model, even more general than “decaying spectrum”. This hypothesis could be satisfied quite easily most of the time because for most images it is reasonable to expect the magnitude of a child to be smaller than the magnitude of its parent. The concept of predicting the insignificance of the coefficients from low frequency to high frequency information, corresponding to the same spatial localisation, is a general concept and not specific to the wavelet transform configuration used.

C.2.5. Successive approximations
A first motivation for employing successive approximation in conjunction with zero-tree coding is that zero-tree coding performs very well encoding the significance map of WCF; the hope is that more efficient coding could be achieved by zero-tree coding more significance maps. Another motivation, especially for some kind of applications derives directly from the goal of developing an embedded code, analogous to the binary representation of an approximation to a real number. Successive approximation provides a coarse-to-fine multi-precision representation of the amplitude information, so the EZW encoder generates a representation of the image that is coarse-to-fine in both the domain and range simultaneously. For these reasons the embedded coding successive approximation quantization, SAQ, which is related to bit-plane encoding of the magnitudes, is applied. The SAQ sequentially applies a sequence of thresholds T0, T1 . . . TN-1, chosen so that Ti = Ti-1 / 2, to determine significance. The initial threshold T0 is chosen so that, for all the WCF xj, | xj | < 2 T0. Without entering into too much detail, during the encoding two separate lists of WCF are maintained: 

· The Dominant List, DL, contains the coordinates of the WCF that have not yet been found to be significant,

· The Subordinate List, SL, contains the magnitudes of the WCF that have been found to be significant.

For each threshold Ti, each list is scanned once and so there are two passes: 

· The Dominant Pass, DP, during which the WCF with coordinates on the DL are compared to the threshold Ti, to determine their significance and, if they are significant, their sign; this significance map is then zero-tree coded. Each time a coefficient is encoded as significant, positive or negative, its magnitude is appended to the subordinate list and the WCF in the wavelet transform array is set to zero,

· The Subordinate Pass, SP, in which all the WCF on the SL are scanned and the specifications of the magnitudes available to the decoder are refined to an additional bit of precision; moreover during this pass the width of the effective quantizer step size is cut in half. This refinement can be encoded using a binary alphabet, symbol “1” shows that the true value falls in the upper half, symbol “0” in the lower half; the string of symbols is then entropy coded.

After the completion of an SP the magnitude of the WCF belonging to the SL are sorted in decreasing magnitude; the process continues then alternately with the two passes. In the decoding operation, each decoded symbol refines and reduces the width of the uncertainty interval in which the true value of the WCF may occur; a centroid, a mean or a min-max optimal value as the reconstruction value could be used. The encoding stops when some target stopping condition, such as bit budget, is met; it is important to see that the encoding can cease at any time and the resulting bitstream contains all lower rate encoding. It is also important to say that terminating the decoding of an embedded bitstream at a specific point in the bitstream produces exactly the same image that would have resulted if that point had been the initial target rate. A side benefit is that an operational rate versus a distortion plot for the algorithm can be computed on line. The particular encoder alphabet used by the arithmetic coder contains either 2, 3 or 4 symbols depending whether the encoding is for a subordinate pass, a dominant pass without or with zero-tree root symbols; this is a real advantage for adapting the arithmetic coder. The order of processing used in EZW implicitly defines a precise ordering of importance that is tied to, in order, precision, magnitude, scale and spatial location as determined by the initial dominant list, even if importance is sometimes a subjective term. To find out more about the EZW method and to go into more depth with the algorithm it is useful to give a complete reading of [S.2]. A simple example of how the EZW algorithm works, that could help to explain the algorithm is shown in [S.2]; for this reason it is presented only some experimental results that help to define the performances of this algorithm versus other algorithms and coding methods like JPEG.

C.2.6. Results

The algorithm is applied to the standard images “Lena” and “Barbara” and six scales of the QMF are used; the results are shown in Table C.1 where the compression ratio is seen in two different but similar way, as x : 1 and as bpp
, and the quality parameter PSNR in dB. Figure C.4 shows visually the different qualities of the reconstructed test image “Lena” at the various compression ratios; it is possible to see that even at high compression ratio, such as 128 : 1, the quality is almost good, compared to the quality of the reconstructed images coded with JPEG.

	
	
	“Lena”
	“Barbara”

	C.R. [x : 1]
	C.R. [bpp]
	PSNR [dB]
	PSNR [dB]

	8 : 1
	1.0
	39.55
	35.14

	16 : 1
	0.5
	36.28
	30.53

	32 : 1
	0.25
	33.17
	26.77

	64 : 1
	0.125
	30.23
	24.03

	128 : 1
	0.0625
	27.54
	23.10

	256 : 1
	0.03125
	25.38
	21.94

	512 : 1
	0.01565
	23.63
	20.75


Table C.1 : Coding results for the image “Lena” and “Barbara”, from [S.2].

A really interesting comparison with JPEG, that shows how efficient is the algorithm, is made with the “Barbara” results. With JPEG it is possible to reach a PSNR of 26.99 dB for a compression ratio of 20.51 : 1 (0.39 bpp); with the EZW instead these two values are obtained:

· With the same compression ratio of 20.51 : 1 (0.39 bpp), more than 2 dB higher value of PSNR, 29.39 dB,

· With the same value of PSNR, 26.99 dB, a compression ratio of 29.63 : 1 (0.27 bpp), increased by nearly half.

Comparing the EZW and the JPEG compressed images with the same value of PSNR not only there is a loss of resolution in both, but there are noticeable blocking artefacts in the JPEG version and other kind of artefacts in the EZW version. For the comparison at the same PSNR one could probably argue in favour of JPEG, but at a very high compression ratio, such as 512 : 1 the EZW version is still recognisable, even if it is really poor, whereas the JPEG version is not recognisable at all, because there is not a sufficient number of bits to encode the DC coefficients of each block. Another interesting property of EZW, as with a lot of embedded coding, is that if the encoding or the decoding terminates during the middle of a pass, there are no artefacts produced that would indicated where the termination occurs.
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Figure C.4 : Performance of EZW coder operating on test image “Lena” at different compression ratios, from [S.2].

C.3. Set Partitioning in Hierarchical Trees

C.3.1. Introduction

In this section a first important evolution of Shapiro’s EZW algorithm, the Said and Pearlman’s Set Partitioning in Hierarchical Trees, SPIHT, algorithm developed in 1995 [S.3], will be explored. This provides an alternative explanation of the principles of the operation of EZW and a new, and quite different, implementation based on set partitioning in hierarchical trees. This results in higher performance than EZW which was based, as seen previously, on three concepts:

· Partial ordering of the transformed image elements by magnitude,

· Ordered bit plane transmission of refinement bits,

· Exploitation of the self-similarity of the wavelet transform of the image across different scales.

In this work, crucial parts of the coding process are fundamentally different from EZW, because in EZW the arithmetic coding of the bitstream was essential to compress the ordering information as conveyed by the results of the significance tests. In SPIHT the subset partitioning is instead so effective and the significance information so compact that even binary unencoded transmission achieves about the same or better performance than EZW. The SPIHT coding and decoding procedures are actually extremely fast, and they could be made even faster by omitting entropy coding with only a small loss in performance. However the utilisation of arithmetic coding usually increases the PSNR by 0.3-0.6 dB. As for EZW, the transmitted code, and so the compressed image file, is completely embedded so the file could be truncated at various points to obtain a series of reconstructed images at lower rates. EZW could not give its best performance with a single embedded file, because it requires for each rate the optimisation of some parameters. SPIHT solves this problem by changing the transmission priority and yields, with one embedded file, its top performance for all rates.

C.3.2 Progressive Transmission Scheme

To understand better the SPIHT algorithm the progressive transmission scheme that prioritises the code bits according to their reduction in distortion is described. As seen in previous chapters, from the original image, defined by a set of N pixel values pij where i and j are the coordinates of the pixel, a DWT results in a set of N transform coefficients cij, each one represented by a small number of bits, 8 or 16, that can be treated as an integer. In a progressive transmission scheme the decoder initially sets the reconstruction vector of coefficients to zero and updates it according to the coded message; after receiving the approximate or exact value of some coefficients the decoder can obtain a reconstructed image p’ij. The main objective in a progressive transmission scheme is to select the most important information to be transmitted first, using the Mean Square Error distortion measure on pij or, what in this case is the same, on cij. If the exact value of cij is sent to the decoder, the MSE decrease by | cij |2 / N; for this reason the coefficients with larger magnitude should be transmitted first. The information in the value of | cij | can be ranked according to its binary representation, so the most significant bits should be transmitted first.

The progressive transmission scheme present in SPIHT incorporates these two concepts:

· Ordering the coefficients by magnitude,

· Transmitting the most significant bits first, as explained in section III of [S.3].

The ordering information makes the uniform scalar quantization method very efficient.

C.3.3. Sorting Algorithm

One of the main features of the SPIHT algorithm is that the ordering of data is not explicitly transmitted, but is based on the fact that the execution path of any algorithm is defined by the results of comparisons at its branching points. If both encoder and decoder have the same sorting algorithm, the decoder can duplicate the encoder’s execution path if it receives the results of the magnitude comparison; an important fact of the design of the sorting algorithm is that we do not need to sort all coefficients, but an algorithm that simply selects the coefficients such that: 

2n ( | cij | ( 2n+1.

The SPIHT sorting algorithm divides the set of pixels into partitioning subsets Tm by performing the magnitude test:

Max {|cij|}> 2n : for (i,j ( Tm)

If the decoder receives “No” all the coefficients in Tm are insignificant, otherwise a certain rule is used to partition Tm into new subsets {Tm , e} and the significance test is applied to the new subsets. This set division process continues until the magnitude test is complete for all the single coordinates of the significant subsets, in order to identify each significant coefficient.

C.3.4. Set Partitioning Rule

To reduce the number of magnitude comparisons, and so the number of message bits, a Set Partitioning Rule is defined. This uses an expected ordering in the hierarchy defined by the subband pyramid, with the objective of creating new partitions with large numbers of elements for insignificant subsets and only one element for a significant subset. Looking at the spatial orientation of the tree, it is possible to see that the coefficients are better magnitude ordered moving from the highest to the lower level of the subband pyramid following the same spatial orientation. For instance, large low-activity areas are expected to be identified in the highest levels of the pyramid and they are replicated in the lower levels at the same spatial location.
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Figure C.5 : Example of parent-offspring and parent-descendants dependencies in the spatial-orientation tree. 

The spatial orientation tree, as for the EZW algorithm, naturally defines the spatial relationship in the hierarchical pyramid; this tree is a basis of the coding algorithm completely explained in the sections V and VI of [S.3]. From the tree these four sets of coordinates could be found, as shown in Figure C.5:

· Oij, set of coordinates of all offspring
 of the node nij,

· Dij, set of coordinates of all descendants of the node nij,

· Lij = Dij - Oij.

Whether H is the set of coordinates of all spatial orientation tree roots. Parts of the spatial orientation tree is used as the partitioning subset in the sorting algorithm.

C.3.5. Lists of Sets and Pixels

Within the set partitioning rule the significance information is stored in three ordered lists: LIS, list of insignificant sets; LIP list of insignificant pixels; and LSP, list of significant pixels. These various sets are sequentially evaluated following the LIS order and when a set is found to be significant it is removed from LIS and partitioned. The new subsets found with this partitioning, are added back to the LIS, or added to the end of LIP or LSP that contains the coordinates of pixels visited in the refinement pass. There are four steps in the algorithm: Initialisation, Sorting Pass, Refinement Pass and Quantization Step Pass. With this algorithm the rate can be precisely controlled, because the transmitted information is formed of single bits and because the encoder can estimate the progressive distortion reduction and stop at the desired distortion value. An additional important task done by the decoder is to update the reconstructed image. As with all coding methods the efficiency can be improved by entropy-coding its output, but at the expense of a larger coding/decoding time; practical experiments show that normally there is little to be gained with entropy coding. The adaptive arithmetic coding algorithm could be used, in fact it is possible to keep together in the lists groups of 2 2 coordinates; their significance values are coded as a single symbol by arithmetic coding algorithm. It is possible however to produce a coded file with the exact code rate and possibly a few bits to pad out the file to the desired size.

	C.R. [x : 1]
	C.R. [bpp]
	“Lena”

PSNR [dB]
	“Barbara”

PSNR [dB]
	“Goldhill”

PSNR [dB]

	8.0 : 1
	1.0
	40.41
	36.41
	36.52

	16.0 : 1
	0.5
	37.12
	31.37
	33.19

	25.8 : 1
	0.31
	35.12
	/
	/

	32.0 : 1
	0.25
	34.20
	27.56
	30.69

	40.0 : 1
	0.20
	33.16
	26.64
	29.80

	53.3 : 1
	0.15
	31.91
	/
	/

	64.0 : 1
	0.125
	31.11
	24.84
	28.47


Table C.2 : Coding results for the image “Lena”, “Barbara” and “Goldhill”, from [S.5].

C.3.6. Results

The results are obtained using the “Lena”, “Barbara” and “Goldhill” test images with and without entropy coding the bits with a five-level pyramid constructed with a 9/7-tap filter. From the results in Table C.2, compared with Shapiro’s EZW for “Lena” image in Table C.1, the results with arithmetic coding surpass in almost all respects the best efforts previously reported, despite their sophisticated and computationally complex algorithms; even the numbers obtained with the binary unencoded versions are superior almost every time. 

In Table C.3 the effect of entropy coding the significance information on the CPU times (excluding the time spent on the image transformation) is shown; in both cases, coding and decoding, the increment is more than double. Table C.3 shows to make a trade-off every time between quality of the reconstructed image and coding time, choosing whether to add an arithmetic coding or not. Figure C.6 shows some comparisons of the “Lena” reconstructed images with the original: a JPEG coded and three SPIHT coded at different compression ratios.

Notice the following:

· SPIHT coded image at 1 bpp, 8 : 1, is almost perfectly similar to the original,

· SPIHT coded image at 0.5 bpp, 16 : 1, is still at high quality,

· SPIHT coded image at 0.31 bpp, 25.8 : 1, remains at good quality and is definitely better than the JPEG coded image at the same compression ratio.
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Figure C.6 : Images of “Lena”: original; obtained with the arithmetic code version of the SPIHT coding method; and with JPEG coding, from [S.3].

	Rate 

[bpp]
	Binary 

Unencoded
	Arithmetic 

Coded

	
	Code
	Decode
	Code
	Decode

	0.25
	0.07
	0.04
	0.18
	0.14

	0.50
	0.14
	0.09
	0.33
	0.29

	1.00
	0.27
	0.17
	0.64
	0.57


Table C.3 : Effect of entropy-coding the significance information on the CPU times (s) to code and decode the image “Lena”
, from [S.3].

C.4. Entropy-Constrained Trellis-Coded Quantization

C.4.1. Introduction

P.Shriram and R.W.Marcellin for the study of their coding algorithm, the Entropy-Constrained Trellis-Coded Quantization, ECTCQ [S.4], have investigated the use of Trellis Coded Quantization, TCQ, with the DWT for encoding both monochrome and colour images; TCQ was introduced as an effective scheme for quantizing memory-less sources with low to moderate complexity. As in TCM
 [S.4], an expanded codebook is partitioned into subsets and these subsets are used to label the branches of an appropriate trellis: the Viterbi algorithm [S.4] is then used to find the minimum MSE path through the trellis. 
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Figure C.7 : A four-state trellis with subset labelling (left) and partition for two-bit per sample TCQ (right).

In the wavelet coder the lowest frequency sub-image is encoded using a 2D DCT encoder, while the other sub-images are encoded using TCQ for memory-less data. An integer algorithm is then employed to allocate the available bit rate optimally among the subbands; a small amount of side information is finally transmitted.

C.4.2. Trellis-Coded Quantization

Before investigating ECTCQ, TCQ should be understood better; the motivation for this quantization is derived from the formulation of TCM shown by G. Ungerboeck [S.4]. In the simplest case, for encoding a memory-less source using TCQ at a rate of R bits/sample, a scalar codebook, having 2R+1 elements is partitioned into four subsets; these subsets are used to label the branches of a suitably chosen trellis, as in Figure C.7. For a given sequence of data, the Viterbi algorithm is used to find the sequence of codewords that minimises the MSE. A simple method to encode the resulting sequence of TCQ codewords into a bit sequence is to allocate one bit/sample for specifying a path through the trellis, while using the remaining R-1 bit/sample to specify a codeword from the subset chosen at each point in time.
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Figure C.8 : Block diagram of a monochrome TCQ wavelet coder.

C.4.3. Different Approaches

Entropy-Constrained TCQ was introduced by Fisher and Wang [S.4] showing that near optimal performance for encoding memory-less sources could be achieved at encoding rates greater than 1.5 bits/sample; even here one bit is used to specify the path through the trellis and the remaining is used to specify an element from each subset. The entropy of the codeword elements in each subset is then computed as an estimate of the remaining portion of the rate. In an attempt to achieve encoding rates lower than 1 bits/sample with scalar codebooks, a different approach enables ECTCQ to achieve near optimal performance for encoding memory-less sources at all non-negative encoding rates. This approach makes use of the fact that in any given state the next codeword must be chosen from either the supersets S0 = D0 ( D2 or S1 = D1 ( D3 (Figure C.7).

Rather than using one bit/sample to specify a path through the trellis, all the available rate can be used to specify an element from a superset, that uniquely determines which subset the codeword comes from and so the next trellis state.

C.4.4. ECTCQ Algorithm

Figure C.8 illustrates the procedural flow for a monochrome TCQ wavelet coder. For the best comprehension of this diagram, an explanation of some interesting parts is necessary; it is possible to find a more detailed explanation in [S.4]. The input image is decomposed into a series of sub-images using a 2D DWT, then a 2D DCT is used, with a block size of 4 4, for encoding the Low Frequency Subbands, LFS. The coefficients are collected into sequences to be encoded using ECTCQ, as is each of the High Frequency Subbands, HFS; in each case four-state ECTCQ systems are used. A small amount of side information, sample mean of DC coefficient and sample standard deviation of all the sub-images and the DCT coefficients, are transmitted. All the DCT coefficients and the sub-images are normalised and divided by their standard deviations and then they are encoded using ECTCQ at a chosen rate. At the receiver the bit sequence and the normalisation parameters are used to reconstruct the quantized coefficients and an IDCT is then performed before the final IDWT.

	C.R. [x : 1]
	C.R. [bpp]
	PSNR [dB]

	8.60 : 1
	0.93
	39.85

	13.56 : 1
	0.59
	37.63

	14.55 : 1
	0.55
	37.33

	16.66 : 1
	0.48
	36.61

	29.63 : 1
	0.27
	33.27


Table C.4 : Coding results for the image “Lena”, from [S.4].

C.4.5. Results

An investigation compare seven band, 7B, 2 level-pyramid, and sixteen band, 16B, 5 level-pyramid, decomposition, shows that to obtain the same PSNR values the 7B system requires an encoding rate 15% higher than the 16B system. Moreover the 16B images are sharper and with less noise than the 7B images at the same PSNR. Thus the 16B decomposition results in an improvement in both the encoding rate and the quality of the reconstructed imagery, so all the simulation results assume the use of the 16B decomposition. Coding simulations are performed only with the “Lena” test image with 16B decomposition, with 9-tap spline QMF and give the results shown in Table C.4. The values are a lot better than the values found with the EZW and are at the same level, sometimes slightly worst than the SPIHT values. A subjective evaluation of the encoded image reveals the same trend shown with the PSNR evaluation, so the coder is quite competitive. The encoded image at 0.93 bpp is almost indistinguishable from the original image, at 0.48 bpp it is extremely good with very little high frequency background noise and smoothing with no visible artefacts and at 0.27 bpp is quite natural looking but with some perceptual distortion. 

C.5. Scene Adaptive and Signal Adaptive Quantization

C.5.1. Introduction

To exploit the characteristics of the subband coefficients is a big challenge as well as a great opportunity in wavelet-based compression, and this with respect to both spectral and spatial localities. A common problem with many existing quantization methods is that the inherent image structures are severely distorted with coarse quantization. Observation shows that subband coefficients with the same magnitude generally do not have the same perceptual importance; this depends on whether or not they belong to clustered scene structures. In Luo and Chen’s algorithm [L.1] is proposed a novel Scene Adaptive and Signal Adaptive Quantization (SASAQ) scheme capable of exploiting both the spectral and spatial localisation properties resulting from the wavelet transform. This quantization is implemented as a clustering process based on the Maximum a Posteriori Probability (MAP) estimation, in which subband coefficients are quantized to their cluster means, subject to local spatial constraints. The intensity distribution of each cluster within a subband is modelled by an optimal laplacian source to achieve the signal adaptivity, while spatial constraints are enforced by appropriate Gibbs Random Fields (GRF) to achieve the scene adaptivity. With spatially isolated coefficients removed and clustered coefficients retained at the same time, the available bits are allocated to visually important scene structures, so that the information loss is least perceptible. The reconstruction noise in the decompressed image can be suppressed using another GRF-based enhancement algorithm.

C.5.2. Multiscale Representation and Human Visual System

Wavelet transform coding resembles the Human Visual System (HVS), in that an image is decomposed into a multiscale representation, and it has good localisation properties both in space and frequency domains. These two features provide excellent opportunities to incorporate the properties of the HVS and to devise appropriate coding strategies to achieve high performance image compression. The combination of high compression ratio for perceptually insignificant coefficients and high fidelity for perceptually significant coefficients provides a promising alternative to high quality image coding at low bit rates. For high frequency subbands various Scalar and Vector Quantization, SQ and VQ, schemes have been proposed, but a common problem within these methods is the distortion of the image structures when a coarse quantization is applied. Vector quantization is performed by approximating the signal to be coded by a vector from a codebook generated from a set of training images based on minimising the MSE. This generally achieves better coding efficiency. In general the creation of a universal codebook for any image is impossible; moreover at low bit rates VQ often produces visible blocking artefacts which severely degrade the image quality, and the codebook generation and searching are computationally expensive. Both conventional VQ and traditional SQ schemes have limitations in exploiting the unique spatial and spectral localities of wavelet decomposition, as well as the psychovisual redundancies in the subbands, and are therefore not amenable to achieving high performance coding. The proposed adaptive quantization with spatial constraints is intended to resolve these problems.

C.5.3. Spatial Constraints

The incorporation of GRF as spatial constraints in a clustering process enables the quantization to be both signal and scene adaptive. Such a quantization constitutes the major distinction of this scheme from the existing ones, because it is designed to exploit both the spectral and the spatial localities simultaneously. In this scheme an adaptive clustering with spatial constraints is applied to the sparse and highly structured high-frequency band to accomplish the quantization. The incorporation of localised spatial constraints is justified and facilitated by the existence of a good spatial locality in the subbands decomposed using wavelets. The representation of each pixel by its cluster mean is equivalent to a quantization process: this quantization enables to preserve the important scene structures and eliminate most isolated impulsive noises which have negligible perceptual significance. The compression ratio of these quantized high frequency subbands can be greatly increased because the entropy has been reduced due to the smoother spatial distribution of each cluster within these subbands.

C.5.4. Enhancement Algorithm

The reconstructed images from these quantized high-frequency subbands can also be enhanced in the post-processing stage using an enhancement algorithm based again on a GRF, so that reconstruction noise can be suppressed while the image details are well preserved. The clustering in this algorithm is implemented as Bayesian estimation through optimal modelling of the intensity distributions and efficient enforcement of various spatial constraints in different subbands. The terminology of “Scene Adaptive” and “Signal Adaptive” is used to emphasise two different aspects of this algorithm:

· The signal adaptive property refers to the modelling and exploitation of the intensity distribution of the coefficients; this is accomplished by using a Laplacian model to model the intensity distribution of each cluster in the Bayesian estimation framework.

· The scene adaptive property refers to the modelling and exploitation of the spatial redundancies in a given high frequency subband; this is accomplished by using GRF tuned according to the orientation and resolution of each subband

The scene adaptivity and the signal adaptivity are generally related to the exploitation of psychovisual redundancies within the framework of wavelet decomposition.

C.5.6. Adaptive Quantization Algorithm

We will now briefly introduce the adaptive quantization algorithm, with some discussion about optimal Laplacian modelling of the cluster distributions, the effective enforcement of various spatial constraints using GRF and the efficient non-iterative implementation of the clustering based quantization. For a deeper reading of these points, consult [L.1]. Many attempts in low bit rate subband coding have been concentrated on the study of the characteristics of the high frequency subbands. One characteristic is the less significant perceptual responses of these subbands. They can often afford coarse representation resulting in fewer bits needed to code the image without introducing much visible distortion in the reconstructed images. Another important characteristic of the high frequency subbands is the spatial structures in these subbands; these structures appear as sparse “edges” and “impulses” that correspond mainly to a few strong intensity discontinuities in the temporal or spatial domain. 

In general, strong and clustered edges and impulses are of significant visual importance and they need to be preserved in the quantization, but there are also some non-structural weak impulses corresponding to noise, which has much less visual importance but would need a considerable amount of bits to code. Removal of this noise would lead to significant coding gain with perceptually negligible distortion in the reconstructed image. In addition, these sparse edges and impulses exhibit a well-defined directional arrangement in accordance with the filtering direction in the subband analysis. To achieve the desired simultaneous scene adaptivity and signal adaptivity, a novel quantization scheme is proposed for high frequency subbands, based on the concept of adaptive clustering with spatial constraints. In this clustering based quantization, each pixel is quantized to its cluster mean according to its intensity and its neighbourhood constraints modelled by a GRF as seen previously. Such a clustering process results in an adaptive quantization in two aspects:

· First, the quantization is signal adaptive since the number of quantization levels needed and the value of these quantization levels are determined according to the statistical characteristics and the perceptual frequency response of each subband.

· Second, through enforcing spatial constraints, isolated pixels or pixels representing local noisy variations are quantized to the mean of the cluster to which the majority of their neighbours belong, and therefore are absorbed by their neighbourhood.

With such a constraint clustering, the spatial distribution of subbands become rather smooth, but the prominent structures and details with significant perceptual importance are preserved. The adaptive quantization is able to group together the subband coefficients which are likely to have come from intrinsic objects in the original scene without requiring specific object models. The quantization depends on the local scene structure and is therefore scene adaptive. Upon completion of such an adaptive clustering and quantization the high pass subbands contain mainly refined “edges” or “clumps” over a much cleaned background. Since the noise is largely removed and the edges redefined using only a few levels, the images are significantly less busy, with greatly reduced entropy. Images can be modelled by a GRF and image clustering can be accomplished through Maximum a Posteriori Probability estimation, and these features allow to achieve better “dead zone” effects. For more details on the algorithm, see section III and IV of [L.1].

[image: image9.wmf]
Figure C.9 : A four-band decomposition of the “Lena” image: the original subbands (left) and the quantized high frequency subbands (right).

C.5.7. Results

To end this section some of the experimental results obtained by the SASAQ algorithm with the test image “Lena” are shown; these are performed using a two-tap Haar filterbank as temporal filterbank and Daubechies’ wavelet 9/7 biorthogonal filterbank for the spatial analysis and synthesis. From Figure C.9 the spatial distribution of the quantized subband is made smoother because of the incorporation of spatial constraints. Using adaptive quantization it is possible to remove those perceptually negligible noisy contents and only preserve those visually important components in the high frequency subbands. This is demonstrated in the right part of Figure C.9, in which however the contrast is increased and the effect emphasised. The values of PSNR for a compression ratio of 0.5 bpp are shown in Table C.5 with combination of Gaussian or Laplacian modelling (GM and LM), and normal or Non-iterative Iterated Conditional Mode (ICM and NICM); further explanation about the meaning of these terms in [L.1]. In terms of the modelling of the intensity distribution, Multiple Laplacian modelling is able to produce the most coherent quantization; in terms of implementation, the non-iterative quantization enforces the spatial constraints more rigorously than the quantization through the ICM.

	Quantization scheme
	PSNR [dB]

Before Enhancement
	PSNR [dB] 

After Enhancement
	Average HF Entropy
	Average HF Entropy After Quantization

	GM, ICM
	35.53
	35.57
	3.46
	0.320

	GM, NICM
	35.54
	35.62
	3.46
	0.318

	LM, NICM
	36.29
	36.32
	3.46
	0.316


Table C.5 : PSNR of the reconstruction and overall entropy reduction in high frequency subbands on “Lena” image, using SASAQ, from [L.1].

A comparison with the Shapiro’s EZW, using a compression ratio of 0.25 bpp, and cascading to it the adaptive quantization shows a PSNR value of 33.52 dB, compared to 33.17 dB of EZW and to 33.91 dB of the SASAQ after the enhancement.

C.6. Space-Frequency Quantization

C.6.1. Introduction

A new class of image coding algorithms coupling standard scalar quantization of frequency coefficients with tree-structured quantization, related to spatial structures, has shown good performance and has confirmed the promised efficiencies of hierarchical representation. In the Space-Frequency Quantization (SFQ) algorithm, proposed by Xiong, Ramchandran and Orchard, the spatial quantization mode and standard scalar quantization are studied with the idea to combine them in an optimal way. In [X.2] zero-tree quantization is considered in a coarse way, zeroing out the tree structured set of WCF, and the simplest form of scalar quantization, that is a single common uniform scalar quantizer applied to all non zeroed coefficients. Moreover an image coding algorithm is developed specially for solving the optimisation problem due to the combination of the two quantization modes. Typical algorithms exploit the dependencies and model the image as a composition of statistically distinct narrow-band processes. 

Basic Vector Quantization (VQ) algorithms are based on low-dimensional and very general models for small blocks of image data, but they do not provide models for dependencies between the blocks. More complex coding algorithms are based on models of block interdependence, such as Finite-State VQ and Lapped-Orthogonal Transform Coding; or composite source models, such as Classified VQ, or image segmentation. The performance of each of these approaches has then been optimised through careful consideration of quantification strategy, and this shows a general trend: More complex models are needed to achieve improved coding efficiency. The algorithm proposed here is a step in the opposite direction, in fact it is fundamentally a very efficient algorithm because it is based on a remarkably simple image model.

C.6.2. Energy Point of View

It is suggested that natural images are well characterised as a linear combination of energy concentrated in both frequency and space. Most of the energy is concentrated in low frequency information, and within the high frequency components most energy is spatially concentrated around edges. Efficient wavelet transform coding compacts energy into a few low frequency coefficients and also represents high frequency energy in a few spatially clustered high frequency coefficients. Initial wavelet based coding algorithms were designed to exploit the energy compaction properties of the wavelet transform by applying scalar or vector quantizers optimised for the statistics of each frequency band of wavelet coefficients, but with a modest improvement in coding efficiency. Contrasting with those early coders the SFQ algorithm proposes to exploit both the frequency and spatial compaction properties of the wavelet transform through the use of two very simple quantization modes.

C.6.3. Quantization Scheme

To exploit the spatial compaction properties of wavelets, as seen previously, a symbol is defined that indicates that a spatial region of high-frequency coefficients have value zero, within the zero-tree quantization: this can be viewed as a mechanism for pointing to the locations where high frequency coefficients are clustered. This quantization mode directly exploits the spatial clustering of high-frequency coefficients predicted by the image model. For coefficients that are not set to zero by zero-tree quantization, it is proposed to apply a common uniform scalar quantizer, independent of the coefficients’ frequency band. The scalar indices are then coded with an entropy coder, with probabilities adapted to the statistics of each band. This quantization scheme is selected by the authors for its simplicity, because more complicated quantization schemes are linked to a noticeable increment in computational complexity with only limited gain in performance. 

An important question linked to this algorithm is how to jointly optimise the application of spatial quantization modes, zero-tree quantization and scalar quantization of frequency bands of coefficients. The algorithm focused on the problem of optimising the application of zero-tree and scalar quantization in order to minimise distortion for given rate constraints. The image coding algorithm is designed to optimally select the spatial regions from the set of regions allowed by the zero-tree quantizer, apply zero-tree quantization and optimally the scalar quantizer’s step size for quantizing the remaining coefficients. It is observed that although these quantization modes are very basic, an image coding algorithm that applies these two modes in a jointly optimal manner, can be competitive with, and sometimes outperform, other coding algorithms.

C.6.4. Residue Tree and Zero-tree Data Structure

Having defined the zero-tree structure and the spatial wavelet coefficient tree, as seen in previous sections, we have to introduce the “Residue Tree” as the set of all the descendants of any parent node in the tree, semantically different from the zero-tree. When a residue tree is zero-tree quantized, only a single symbol is needed to represent the set of zero-quantized WCF. The motivation for applying zero-tree spatial quantization of a residue tree is the observation that the coefficients of any residue tree represent the energy above some fixed frequency over some spatial region of the image. A zero-tree data structure is a convenient way to deal with sets of coefficients, and therefore to characterise the entropy of sets or vectors of insignificant coefficients without approximating them as the sum of individual entropies. An important distinction between the proposed framework and the frameworks of earlier uses of zero-tree data structure is that in this case, the zero-tree criterion does not necessarily require that all the coefficients of the residue tree have to be insignificant with respect to a set of quantization thresholds.

C.6.5. SFQ Algorithm

The underlying theme of Space-Frequency Quantization (SFQ) is that of efficiently coupling the spatial and frequency characterisation modes offered by the wavelet coefficients by defining quantization strategies that are well matched to the respective modes. The strategy used in the algorithm is a combination of simple uniform scalar quantization to exploit the frequency characterisation, with a fast tree-structured zero-tree quantization scheme to exploit the spatial characterisation, as shown in Figure C.10. The SFQ coder has the goal of jointly finding the best combination of spatial zero-tree quantization choice and scalar frequency choice. The strategy is conceptually simple:

· Throw away, or quantize to zero, a subset of WCF, and use a single-sample uniform scalar quantizer on the rest.

There are two key questions with this framework, regarding what spatial subset of coefficients should be thrown away, and what uniform scalar frequency quantizer step size should be used to quantize the survivor set. The answers to these questions are found by the authors, invoking an operational rate-distortion optimality criterion, assuming that the two questions are interdependent. The interplay between the two modes necessitates an iterative way of optimising the problem, which is described in detail in sections II and III of [X.2]. 
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Figure C.10 : Block diagram of the SFQ coder.
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Figure C.11 : Histogram of the full set of high pass bands (left) with p0 = 0.718 and histogram of the pruned set of high pass bands after SFQ (right) with p0 = 0.376.

To expect high performance from the use of a single uniform scalar quantizer appears counterintuitive at first glance, but more accurate inspection reveals that this is possible. This is because the quantizer is applied only to a subset of the full wavelet data, the survivors of the zero-tree pruning operation, which has a distribution curve considerably less peaked than the curve of the original full set, as seen in Figure C.11, where p0 is the probability of zero index. The spatial zero-tree operation effectively flattens the residual density of the trimmed set of WCF, endorsing the use of a single step-size uniform quantizer. The quantitative description of the problem and its solution with the proposed approach, using the framework originated by the authors, are both given in section II and III of [X.2]. 

	
	
	“Lena”
	“Barbara”
	“Goldhill”

	C.R. [x : 1]
	C.R. [bpp]
	PSNR [dB]
	PSNR [dB]
	PSNR [dB]

	8.00 : 1
	1.00
	40.52
	37.03
	36.70

	8.89 : 1
	0.90
	40.04
	36.21
	36.05

	10.00 : 1
	0.80
	39.46
	35.36
	35.42

	11.43 : 1
	0.70
	38.85
	34.40
	34.76

	13.33 : 1
	0.60
	38.19
	33.21
	34.08

	 16.00 : 1
	0.50
	37.36
	32.15
	33.37

	20.00 : 1
	0.40
	36.43
	30.77
	32.45

	26.67 : 1
	0.30
	35.07
	29.21
	31.34

	32.00 : 1
	0.25
	34.33
	28.29
	30.71

	40.00 : 1
	0.20
	33.32
	27.23
	29.86


Table C.6 : Coding results of the SFQ algorithm at various bit rates, from [X.2].

Without going into the detail of the algorithm, these two things should remembered:

· The proposed algorithm is designed to use an unweighted MSE distortion measure, with distortion energy measured directly in the transform domain to reduce computational complexity.

· In the tree pruning algorithm, the encoder output rate is approximated by a theoretical first-order entropy, which can be approached very closely by applying adaptive arithmetic coding.

C.6.6. Results

The experiments are performed on the standard test images “Lena”, “Barbara” and “Goldhill” with the 7-9 Biorthogonal set of linear phase filters and a four-level wavelet decomposition; the lowest band is then coded separately from the remaining bands and the tree-node symbols are treated separately. The results, shown in Table C.6 show that the SFQ algorithm is competitive with the best coder seen previously. To illustrate how the zero-tree pruning in the proposed SFQ algorithm changes the statistics of the set of WCF to be scalar quantized, the probability distributions of the high pass WCF of the “Lena” image, with and without zero-tree pruning, are compared and displayed in Figure C.11. From the complexity point of view, a good measure is the running time on a specific machine, in this case a Sun SPARC 5; on this machine it takes about 20 s to run the SFQ algorithm, whereas on the same machine the SPIHT coder takes only 4 s to run on encoding. Although the SFQ encoder is slower, even if simpler, than the SPIHT, the decoder is much faster because there are only two quantization modes used, with the classification being sent as side-information.

C.7. Rate-Distortion Optimised Backward Adaptive Classification
C.7.1. Introduction

S.LoPresto, K.Ramchandran and M.T.Orchard proposed [L.2] a backward adaptive approach where WCF belonging to the high frequency subbands are modelled as independent Gaussian random variables with spatially varying variances; these variances are estimated from causal window of previously transmitted coefficients. Quantization and Entropy Coding are designed to approach entropy-constrained optimality for the specific variance estimate of the WCF; the backward predictive mode is replaced with a forward adaptation mode when a region has the causal window completely zero. The algorithm proposed, called Estimation Quantization, has very low encoder and decoder complexity and is extremely competitive with the other algorithms found in the literature.

C.7.2. Energy Compaction

In the early wavelet-based coding algorithms, coding gain was optimised by maximising the compaction of signal energy in the lowest frequency bands and by optimising the allocation of bit rate among the bands. Significantly improved performance was shown in recent algorithms by exploiting the wavelet’s space-frequency compaction properties, as in EZW, SPIHT and SFQ algorithms; this happened because they recognised that DWT offers two forms of energy compaction:

· Compacting the energy of smoothly varying regions into a few low-frequency WCF,

· Maintaining the concentration of energy associated with singularities, such as lines, edges and corners, in a small spatial neighbourhood of the WCF.

To take full benefit of the DWT's coding potential it is necessary to exploit both these forms of energy concentration. The first form of energy compaction, Standard Frequency-Based compaction, is exploited with standard methods of transform coding in which probability models for the frequency bands are characterised, a global rate allocation is optimised and quantizers and entropy coders are matched to each band, based on the allocated rate. To improve performance in these coders the quantizers and entropy coders have to be optimally matched, and a globally optimal allocation of bit rate among bands should maintained. In the second form of energy compaction, the identity of the coefficients into which energy is concentrated is not known "a priori" at the decoder. The set of WCF appears actually as a set of non-identically distributed random variables, whose average statistics vary with frequency as it is not known "a priori" to the decoder, but spatially, depending on the image itself and unknown to the decoder. In this case, the coder has to optimally match quantizers and entropy coders according to the statistical characteristics of each spatial region of coefficients, and to maintain a globally optimal allocation of bit rate among the regions. Moreover in the bit rate allocation optimisation side-information needed for identifying regions and assigning quantizers to regions have to be included.

C.7.3. Approaches to the Space-Frequency Coding Problem

Various approaches to the space-frequency coding problem have been proposed, involving different aspects of spatial classification of the coefficients; differently from these, the authors propose in this paper a new, backward adaptive approach to spatial classification of WCF. This approach differs from the other methods because the classification is computed at the decoder without the use of side-information concerning classification being transmitted from the encoder. The class of each WCF is estimated based on a causal neighbourhood of previously transmitted coefficients. The new approach has the advantage that constraints on class resolution, region shape and location are unnecessary; indeed each coefficient is assigned its own real-valued class. The accuracy of the classification reflects the extent to which the correct class can be estimated from the quantized values of previously transmitted neighbouring coefficients. The classification approach is based on predicting only the variance of the probability distribution, in which every coefficient is modelled; this leads to a better definition of the collection. In this way the distributions are constrained as little as possible by their variance. It is selected at the end, the maximum entropy distribution given a fixed variance, the Gaussian distribution; further explanation in [L.2].

C.7.4. Estimation Quantization Algorithm

The Estimation Quantization algorithm is organised as three components:

· Classification, sequential estimation of variances from causal past,

· Probability modelling, design quantizers and entropy coder matched to the relative probability,

· Optimal bit rate allocation, finding the best operating point of various quantizers.

For a more in depth look at this algorithm, consult [L.2]. Low-variance regions, where a reliable probability model cannot be estimated, the backward adaptation is coupled with forward adaptation supported with small amounts of side-information. Coupling the adaptation strategy with a convenient parameterised class of probability distributions, Generalised Gaussian, it is possible to do good probability modelling and to use reasonable approximations to entropy-constrained optimal scalar quantizers for those distributions. The complexity of optimising the quantizers themselves and of operating those quantizers to achieve globally-optimal rate allocation is largely hidden in the off-line process of generating data-independent tables of optimised quantization parameters. Optimality is achieved via relatively simple indexing into these tables of quantizers; the resulting image coder has low complexity, while achieving coding performance among the state of the art in image coding algorithms.

	Bit Rate [bpp]
	Lena PSNR [dB]
	Goldhill PSNR [dB]

	1.0
	40.89
	36.96

	0.5
	37.69
	33.42

	0.25
	34.57
	30.76

	0.125
	33.57
	30.04


Table C.7 : Coding results of the EQ algorithm at various bit rates, from [L.2].

C.7.5. Results

The algorithm is tested using the “Lena” and “Goldhill” test images, the PSNR is used as image quality parameter for comparing distortion on reconstructed images, and a four-level wavelet decompositions applied, generating 13 subbands. Comparing the results of the estimation quantization algorithm shown in Table C.7 with the results obtained by the previous algorithms, such as the SPIHT and SFQ algorithms, this classification matches the other coders at low bit rate, indicating that the common use of classification achieves similar effects, even if the coders operate very differently. At high bit rate the neighbour classification method increases the gap with respect to the other coders: this is due to the increased modelling robustness of the coder.

C.8. Context-Based Entropy Coding

C.8.1. Introduction

C.Crisafis and A.Ortega present in [C.2] an adaptive image coding algorithm based on the novel backward adaptive quantization and classification techniques, using a simple uniform scalar quantizer for the image subbands. The idea of the algorithm is to put each coefficient into one of several classes, called “contexts”, depending on the values of the neighbouring previously quantized coefficients which are used to characterise the subbands data. A different probability model is putting in correspondence with every context type, so each subband coefficient can be compressed with an arithmetic coder; the models are appropriate and depend on the neighbourhood of that coefficient. The context selection can be driven by a rate-distortion criterion as in this algorithm, by choosing the context so as to minimise the total distortion for a given bit rate The probability models for each context are initialised and then updated in a very efficient way in this algorithm, so no overhead information has to be sent to the decoder. In the wavelet-based image coder, adaptivity has become an essential component, actually several researchers have advocated making the basic components of their coders adaptive, mainly the tree-structured filterbanks, the filters, the quantizers and the entropy coders; in this algorithm the authors concentrate their efforts on the issue of adaptive quantization and entropy coding for a fixed filterbank.

C.8.2. Adaptive Quantization Approaches

In the recent literature it is possible to find two main approaches to adaptive quantization:

· In the first, there is a fixed quantization for all the coefficients in a given band and a layered transmission of the coefficients using arithmetic coding, as in EZW and SPIHT.

· In the second, different quantizers and different entropy coders are used for different regions within the various subbands, as in Trellis-based coders where a different quantizer is used for each class of coefficients, pre-analysing the subband data and sending the class assigned to each block as side information; this approach could be extended to a backward adaptation framework.

Another approach to adaptive quantization of image subbands is presented in this algorithm and this could be seen as a combination of the two above mentioned methods. A fixed uniform quantizer is used for all the subbands and it is followed by the arithmetic coding of the resulting set of coefficients; moreover a Backward Adaptive Classification is utilised to determine which set of probabilities will be used by the arithmetic coder. Several different probability models are interesting for the quantized coefficients so a key issue is the determination of the way of assigning each coefficient to a probability model. In this method, this is done by classifying the current coefficients based on past neighbouring quantized coefficients. A predictor based on the neighbouring coefficients is generated and some thresholds on the predictor are selected to determine the class. The optimal classification can be approximated by designing a Lloyd-Max Quantizer (LMQ) [C.2] matched to the distribution of the predictor.

C.8.3. Context-Based Adaptive Arithmetic Coder

The context-based adaptive arithmetic coder presented in [C.2] is similar to the other coders, with two important differences:

· It operates in the subband domain, rather than the image domain,

· Its contexts are determined based on the past quantized data rather than from the original data as in some lossless compression schemes.

The approach shown in the paper is simpler than the adaptive quantization methods and it could be better suited to high rates, where the layered coding approaches lose some of their benefits.

The work proposed in the previous section by LoPresto, Ramchandran and Orchard follows a similar context-based adaptation, but uses a different approach for the classification, although gives comparable results. The performance of the arithmetic coders depends on the efficiency of generating a bitstream from the input symbols and on the estimation of the probability model to use. For this reason the average length of the output code could be close to the entropy corresponding to the probability models utilised. The arithmetic coding will approach the entropy of the source if the probability model reflects the statistical properties of the input; for that reason different probability models will give different compression performance for the same data. Adaptively learning the probability in real time not only allows the coder to perform better than in a non-adaptive scheme, but also allows a better approximation to the true statistics of the data. The goal of the algorithm is to improve the performance by modelling the data in each subband as a mixture of probability distribution functions where each distribution occurs after a specific context. The key issue is how to find an efficient context-based classification, not how to determine the probabilistic model to use for a coefficient as a function of its neighbours; this is shown in section 2.1 of [C.2]. The arithmetic coder uses the model corresponding to each context and performs on the fly adaptation of each model as shown in section 2.2 of [C.2]. A description of the algorithm is then given in section 3 of the same paper, where it is possible to see the simplicity of this method, the fact that no explicit training is required, and the use of a simple scalar quantizer.

C.8.4. Results

In this paper the authors use a 23-25 Daubechies biorthogonal 2 channel filterbank with a simple modification that allows the use of the same quantization step size for all the subbands. As far as the bit allocation is concerned, this filterbank is equivalent to an orthogonal filterbank. The images used for the tests are the test images “Lena”, “Barbara” and “Goldhill”, and the results are shown in Table C.8; it is possible to see here and more in detail in the next section that on the average this algorithm outperforms the SPIHT algorithm which has similar complexity and give similar results, and sometimes better results, compared to the other state-of-the-art algorithms. The potential benefits of this method compared to the methods studied before are the speed, the simplicity, and the fact that there are no tree structures involved, so that all the operations can be done sequentially. On the other hand, this system is unfortunately not embedded, and this is an advantage in some cases. Another feature of this method is that it tend to work better at high bit rates, but it could be modified to provide good results on a wide range of bit rates, from high compression ratio up to lossless compression.

	Bit Rate

[bpp]
	Lena

PSNR [dB]
	Barbara 

PSNR [dB]
	Goldhill

PSNR [dB]

	1.00
	40.80
	37.61
	36.90

	0.50
	37.52
	32.37
	33.41

	0.25
	34.31
	28.41
	30.67

	0.20
	33.24
	27.22
	29.94


Table C.8 Coding results of the CB algorithm at various bit rates, from [C.2].

C.9. Comparison of Coding Results

C.9.1 Introduction

In this section results obtained from the seven algorithms seen previously are compared with the JPEG coding algorithm. For this comparison the image quality parameter PSNR on the reconstructed images at different compression ratio is used, using as test images mainly the three images: “Lena”, “Goldhill” and “Barbara”. 

Whereas for the “Lena” image results from all the coding algorithms are feasible, sometimes for few bit rates and sometimes for a big number of different compression ratios; for the image “Barbara” no results are reported from the ECTCQ and the SASAQ algorithm; for the image “Goldhill” results reported in various paper and web pages are found only for the five coding algorithms: JPEG, SPIHT, SFQ, CB and EQ. All the results are reported in diagrams “PSNR [dB] - Bit Rate [bpp]”, reporting the absolute values and the differential values found between them and the EZW values at the same CR, for the images “Lena” and “Barbara” and the SPIHT values for the “Goldhill” image. We have decided to show these two diagrams for every test image, because the curves relating to the absolute values are sometimes too close and so they are difficult to distinguish, even if it is really interesting to see the variation of the PSNR values, and so the quality of the images, with the variation of the compression ratio.

C.9.2 Results on “Lena” image

The first interesting feature of Figure C.12 is that there is a clear distinction between the JPEG curve, the EZW curve, which has the same shape, but positioned 1-2 dB higher, and all the curves belonging to the SPIHT and to other algorithms, that have more or less 3 dB more than the JPEG curve. 
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Figure C.12 : “Lena” compression results (coloured version in Appendix: Figure A.5).

These features show two important things:

· At the same bit rate, or compression ratio, the EZW reconstructed image looks much better, or more similar in quality to the original image, than the JPEG reconstructed image, but worse than SPIHT and other algorithms. For example, for a bit rate of 0.5 bpp the EZW reconstructed image has a PSNR value of 36.28 dB whereas the JPEG image has a value of 35.51 dB, about 0.8 dB lower; the SPIHT image, and more or less all the other algorithms, has a value of 37.12 dB, about 0.8 dB higher than the EZW image and 1.6 dB than the JPEG image,

· If keeping as reference parameter for an application the image quality parameter PSNR, then it is possible to choose a compression ratio for the EZW coder higher, or a bit rate smaller, than the JPEG coder, but smaller than the SPIHT and the other coders. For example thinking about a value of PSNR equal to 35 dB, the bit rate to choose for the EZW coder is approximately 0.4 bpp, for a compression ratio of 20 : 1; for the JPEG coder a bit rate of about 0.48 bpp, for a compression ratio of 16.67 : 1, and for the SPIHT coder a bit rate of 0.28 bpp, for a compression ratio of 28.57 : 1 are necessary.
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Figure C.13 : “Lena” compression results referenced to EZW (coloured version in Appendix: Figure A.6).

For almost all the coders between 0.25 bpp and 1 bpp there is a common trend of about 0.6-0.7 dB of decrement of PSNR values every 0.1 bpp of decrement on the bit rate; this decrement increases to 1 dB every 0.05 bpp for values of bit rate between 0.05 and 0.25. For bit rates lower than 0.1 bpp the quality of the image begins to become, in some cases, fairly shoddy; but it is exactly in that area that we can achieve an important difference between JPEG coders and wavelet-based coders, in terms of compression ratio with a still acceptable quality. 

Figure C.13 shows that the difference between EZW and JPEG PSNR values increases with the increasing of the compression ratio, reaching quite significant values at very low bit rates, more than 1.5 dB at 0.125 bpp. Also, every wavelet-based coder has a different behaviour with the varying of the bit rate. The ECTCQ coder is quite good, even if it, and the SASAQ coder, are the coders with the worst values among the post-EZW coders for high bit rate, but when the compression ratio increases it assumes behaviour similar to the EZW coder. The SASAQ coder instead has better behaviour at high compression ratio. 

The SPIHT coder represents a good trade off between the compression ratio achieved and the computational complexity of the algorithms and its PSNR values remain between 0.9 dB and 1.1 dB more than the EZW values. The SFQ coder and the CB coder have quite similar values, 1.1-1.3 dB more than EZW values (a little bit better the SFQ for the high compression ratio, whereas the CB looks better for high bit rate). The EQ is the coder that gives the best values among all the wavelet based coders both for high compression ratio and high bit rate, reaching a difference of 1.4-1.5 dB compared to the EZW values. 

C.9.3 Results on “Barbara” image

Looking at the diagram reporting the curves of the PSNR values obtained with the “Barbara” test image, shown in Figure C.14, a first important thing is shown: the curves of the JPEG and EZW values are quite similar for high bit rates, with a little increment of JPEG, and they diverge showing higher value for EZW coders only for bit rates lower than 0.4-0.5 bpp. The second important thing noticed on the diagram is that the curves of the SPIHT coder and of the other wavelet-based coders are different, about 0.8-1 dB more than the EZW for SPIHT and about 1.5-2 dB more than EZW for the other coders. 

The other trends noticed in the “Lena” diagrams, like decrement of PSNR quite constant for a decrement of bit rate, and the exaggeration of this behaviour for high compression ratio, still remain in this diagram. 
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Figure C.14 : “Barbara” compression results.

From the differential diagram on the image “Barbara”, shown in Figure C.15, it is possible to notice better the similarity between JPEG and EZW values and the difference between SPIHT values and the other wavelet-based coders, as seen previously. Between these coders, as for the “Lena” image, the EQ coder is the best one, with only 0.1-0.2 dB of difference with the CB coder and with some fractions of dB more than SFQ coder.
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Figure C.15 : “Barbara” compression results referenced to EZW.

C.9.4 Results on “Goldhill” image

From the diagram of the values obtained on the “Goldhill” image, shown in Figure C.16, the same trends and behaviour seen in the two previous subsections are extracted: the similarity between all the wavelet-based coders, the difference from the JPEG coder, from 1 to 1.5 dB, and almost linear decrement of the PSNR values with the increment of the compression ratio.
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Figure C.16 : “Goldhill” compression results.

From the differential diagram, shown in Figure C.17, the slight improvement of the SFQ, CB and EQ coders, all very similar to each other, with respect to the SPIHT coder is noticed. As seen previously, the values of PSNR of these wavelet-based coders are quite similar, so a trade-off between a little improvement with respect to the computational complexity and a little improvement of quality of the image or compression ratio achieved is necessary.
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Figure C.17 : “Goldhill” compression results referenced to SPIHT.



� Embedded Zero-tree Wavelet.

� Discrete Cosine Transform.

� Set Partitioning in Hierarchical Tree.

� Entropy-Constrained Trellis-Coded Quantization

� Scene Adaptive and Signal Adaptive Quantization.

� Human Visual System.

� empirical evidences suggest that the hypothesis often is true. 

� Bits per pixel

� Direct descendants.

� IBM RS/6000 Workstation.

� Trellis-Coded Modulation.
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