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Appendix B

Introduction Wavelet Tests

“Felix qui potuit rerum cognoscere causas”

(Virgilio, Georgiche, II, 490)

B.1. Introduction

In chapters 4, 5 and in the appendix C, the results of some tests directed at having a better comprehension of the most up to date and frequently used method of image and signal compression, the Wavelet Transform Method are illustrated. A complete explanation on wavelet transforms and especially on Discrete Wavelet Transform (DWT) and Inverse Discrete Wavelet Transform (IDWT) can be found in the first part of this project at the section 2.2.3.; in this introduction we want only to specify something regarding the development of the tests.

B.1.1. Wavelab

All the tests explained in this appendix and in the chapters 4 and 5, are developed with Matlab 5
 applications, precisely with the use of WaveLab, a toolbox developed by “Stanford University”
 instead of the original Wavelet Toolbox developed by “The MathWorks”
. WaveLab is actually not so complete as the Wavelet Toolbox in terms of functions and utilities, but it is freeware and it contains all the basic functions needed for the tests. There is the possibility with the functions FWT2_PO, FWT2_PBS, IWT2_PO and IWT2_PBS to make DWT and IDWT for orthogonal and biorthogonal wavelet and to build with MakeONFilter and MakeBSFilter the QMF
 orthogonal and biorthogonal suitable for these transformations. These functions work only with greyscale images, u8int or double class arrays, and require images whose size is square and with dyadic length
, usually 256 256 or 512 512, as the test images shown in Figure 3.2.

B.1.2. Images Used

The results obtained from these tests will be extracted for each image and for the mean of the five images. The basic idea of these tests is to improve the knowledge about these subjects:

· the values of the wavelet coefficients obtained in each subband and then in every level of the decomposition as shown in Figure B.1,

· the distribution of the really interesting values, distinguishing them from the less important coefficients from an image quality point of view,

· the changing of the image quality because of the transforming of some groups of wavelet coefficients: the kind of modifications usually interesting in coding and compression techniques.
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Figure B.1 : Division into Subbands and Levels within the wavelet coefficients matrix.

B.2. Wavelet Coefficients

Anytime a DWT is carried out on the 512 512 greyscale image a 512 512 matrix of double is obtained, in which every value represents the amplitude of a single WCF (wavelet coefficient). These coefficients, as explained in the section 2.2.3. are grouped together, for a 3 level DWT, in 10 groups, as in the left part of Figure B.1, and in 4 levels, as shown in the right part of the same figure:

· Groups H, I and L are 256 256 size matrices and they represent the first level of detail coefficients; each of them has 65536 coefficients for a total of 196608 coefficients in the first level group,

· Groups E,F and G are 128 128 size matrices and they represent the second level of detail coefficients; each of them has 16384 coefficients for a total of 49152 coefficients in the second level group,

· Groups B,C and D are 64 64 size matrices and they represent the third level of detail coefficients; each of them has 4096 coefficients for a total of 12288 coefficients in the third level group,

· For simplicity we talk about the Zero Level as the combination of these 3 levels, formed by 258046 coefficients, or to explain better as the big group that gathers all the detail coefficients,

· Group A is 64 64 sizes matrix and represent the third level of approximation coefficients and it is formed by 4096 coefficients.

This sharing of the WCF matrix in groups and levels is very important because a first step in understanding better how the DWT works, is to carry out some tests separately on these groups and levels so as to have a critical view of the values of the coefficients in every group and in every level.

B.3. Quadrature Mirror Filters

B.3.1. QMF Explanation

In every DWT for the subband decomposition, a particular kind of filters, as seen in section 2.2.3., is used: High and Low Pass filters; these filters are called Quadrature Mirror Filters (QMF) and are really important for this kind of transformation because through them it is possible to have a perfect reconstruction of the images after the process of the direct and inverse transformation. Wavelab uses two kind of functions to build the DWT, FWT2_PO and FWT2_PBS, and two functions for the IDWT, IWT2_PO and IWT2_PBS; actually WaveLab divides the QMF into 2 groups, orthogonal and biorthogonal filters, using these 2 functions, MakeONFilter and MakeBSFilter respectively, to build these filters; within the two groups it is possible to find further groups as explained later on. Before proceeding with the illustration of the results of the tests it is important to have a closer look at these groups of QMF so as to have a better knowledge of the filters used in the different tests.

B.3.1.1. Wavelets in General
The DWT and the QMF are centred on the concept of “Wavelet”; several families of wavelets have been proved to be useful and a lot of them are included in the WaveLab Toolbox. Whereas one-dimensional analysis is based on one scaling function(x) and one wavelet (x), the two-dimensional analysis on a square matrix, used for the images, is based on one scaling function (x,y) and three wavelets 1(x,y),  2(x,y) and  3(x,y). The usual two-dimensional wavelets are defined as tensor products of one-dimensional wavelets, in fact the scaling function is (x,y) = (x)*(y), whereas the three wavelets are 1(x,y) = (x)(y), 2(x,y) = (x)*(y) and 3(x,y) = (x)*(y). Some properties of the wavelet (x) and the associated scaling function (x) are: 

· The integral of (x) is Zero;

 (x)dx = 0,

· The integral of (x) is One;

(x)dx = 1,

· (x) is used to define the details, used in high pass filters,

· (x) is used to define the approximations, used in low pass filters.

B.3.1.2. Criteria

The different types of wavelet families, which will be explored in the next few sections, have qualities varying according to several criteria; the main criteria are:

· The support of  and : the speed of convergence to zero of these functions when the time t or the frequency  go to infinity; this quantifies both time and frequency localisation,

· The symmetry, which is useful in avoiding dephasing in image processing,

· The number of vanishing moments, which is useful for compression purposes,

· The regularity, which is useful for getting nice features, like smoothness of reconstructed image, and for estimated function in non-linear regression analysis.

These criteria are associated with two properties that allow fast algorithm and space-saving coding:

· The existence of a scaling function (x) of the wavelet (x),

· The orthogonality or the biorthogonality of the resulting analysis.

It is possible to provide defining equations for several wavelets; some are given explicitly by their time definition, others by their frequency definition and still others by their filter.
B.3.1.3. Families and Rules

These are the most important wavelet families, some of which will be explored in the next few sections: Haar, Daubechies, Symlets, Coiflets, Biorthogonals, reverse Biorthogonals, Meyers, discrete approximation of Meyer wavelets. Gaussians, Mexican hat wavelets. Morlets, complex Gaussians, Shannons, frequency B-Spline wavelets and Complex Morlet wavelets. There are no simple rules for selecting a wavelet to use for an analysis; by default, some programs and some algorithms use Symlet 8 or Daubechies 4, and these are a good choice for many applications. The reports [V.2] and [M.3] are the only reports that make an evaluation of some wavelet families using some kind of images; these are really good reports, but the problem is that these statistical evaluations are made with only some parts of wavelet filters, especially biorthogonals, and using only some kind of images: the “Lena” image for [V.2] and texture images for [M.3]. For these reasons we have decided to make some evaluations using the wavelet families found in the WaveLab Toolbox, and using interesting images for the AutoMERS project; these images are shown in Figure 3.2. 

A central reason to use a particular wavelet is to match it with the characteristics of the images analysed; which wavelet to choose, however, is not so clear as in many examples shown in [B.1]. There are many different factors interesting to take into account, but the two most important are the smoothness and the spatial localisation of the wavelet; sometime there is a trade off between these factors, in fact in general the wavelets with wider support are smoother and are spatially less localised. It is possible to reverse the wavelet filters in wavelet analysis; these filters have the same orthogonality properties and smoothness as the original wavelet filters, and theoretical and practical level using reversed wavelet filters make very little difference.
B.3.1.4. Properties

Some properties of the wavelet functions are discusses below:

· Smoothness: this is one of the really important properties for modern wavelet analysis, in fact for many applications the wavelet function has to be sufficiently smooth to efficiently represent the characteristic of the underlying signal; one measure of the smoothness is given by the number of derivatives which exist for that wavelet.

· Temporal and-or Spatial Localisation: a central feature of wavelet analysis is the ability to localise features in time and space; the support width of a wavelet is in fact closely related to its ability to localise features in time and space. Very compact wavelets are very well localised in time and space; support width is generally inversely related to the smoothness.

· Vanishing Moments: a wavelet with a high number of these can represent better high degree polynomial signals and images; this number is closely related to the smoothness of a wavelet.

· Frequency Localisation: wavelets in fact localise features not only in time and space, but also in frequency; smoother wavelets have better frequency localisation properties.

· Symmetry: symmetric wavelets have the advantage of avoiding any phase shifts; the wavelet coefficients do not “drift” relative to the original signal. The orthogonal wavelets
 with a compact support are not symmetric; the Symlet and the Coiflet are nearly symmetric; all the biorthogonal wavelets are either symmetric or anti-symmetric.

· Orthogonality: this is a central feature for some applications; the biorthogonal wavelet lacks this property, although some of them are nearly orthogonal.

After this introduction, the wavelet families used on the tests are explored; they are Orthogonals, Daubechies, Coiflet, Symlet, and Biorthogonals.
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Figure B.2 : Examples of orthogonal Daubechies wavelets family.

B.3.2. Orthogonal

B.3.2.1. Daubechies

Ingrid Daubechies invented what are called compactly supported orthonormal wavelets. The names of the Daubechies family wavelets are written dbN or DaubN, where N is the order of the wavelets; the daub1, that is the first and the simplest, is usually named Haar; some authors and toolboxes, like WaveLab and so us, use 2N instead of N. These wavelets have no explicit expression except for the Haar, even if the square modulus of the transfer function of the scaling filter associated with the wavelet is explicit and simple. The support length of  and  is N-1 and the number of vanishing moments of  is N/2 -1; most DaubN are not symmetrical and for some of them the asymmetry is very pronounced. The regularity increases with the range; in Figure B.2 some examples of Daubechies wavelets are shown. A quite important point is that the Daubechies filters maximise the smoothness of the scaling wavelet by maximising the rate of decay of its Fourier Transform.
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Figure B.3 : Examples of orthogonal Coiflet and Symlet wavelets families.

B.3.2.2. Coiflet

R. Coifman requested the building of this kind of wavelet by I. Daubechies for his work; the wavelets of this family are called CoifN were N is the order; some authors and toolboxes, like WaveLab and so us, use 2N instead of N. The function has N moments equal to 0 and, more unusual, the function  has N-1 moments equal to 0; the two functions have a support of length of 3N-1. The CoifN  and  are much more symmetrical than the DaubN and with respect to the support length CoifN has compared to Daub3N or Sym3N, wavelets family seen later; with respect to the number of vanishing moments of  CoifN has to be compared to Daub2N and Sym2N. However Coiflet filters are designed to give both  and  wavelets 2N vanishing moments; in the Figure B.3 some examples of Coiflet wavelets are shown.
B.3.2.3. Symlet

The Symlets are nearly symmetrical wavelets proposed by Daubechies as modifications to the Daubechies family and the properties of the two wavelet families are similar. In SymN N is the order and as seen for the two preceding families, some authors and toolboxes, like WaveLab and so us, use 2N instead of N; Symlets are however only nearly symmetric, and consequently some authors do not call them Symlets. Symlets are however the “least asymmetric” compactly-supported wavelets with maximum number of vanishing moments; in Figure B.3 some examples of Symlet wavelets are depicted. Table B.1 summarises the support width, the number of vanishing moments and the number of derivatives for the orthogonal wavelets where dN is Daubechies, cN is Coiflet and sN is Symlet. It is possible to see that the Daubechies and the Symlets have the same support width, number of vanishing moments and number of derivatives. The main difference between Daubechies and Symlets is that Symlets are nearly symmetric while Daubechies are highly asymmetric.
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Figure B.4 : Examples of biorthogonal CDF wavelets family.

	
	Support

Length
	Vanishing

Moments
	Number of Derivatives

	Wavelet
	, 
	
	
	, 

	Haar
	1
	0
	0
	0

	d4
	3
	1
	0
	0

	d6
	5
	2
	0
	1

	d8, s8
	7
	3
	0
	1

	d10, s10
	9
	4
	0
	1

	d12, s12
	11
	5
	0
	2

	d14, s14
	13
	6
	0
	2

	d16, s16
	15
	7
	0
	2

	c6
	5
	1
	2
	0

	c12
	11
	3
	4
	1

	c18
	17
	5
	6
	2


Table B.1 : Orthogonal wavelets and their properties.

B.3.3. Biorthogonal

This new family, called Bio CDF
 Nr.Nd, where Nr and Nd are the two orders of the family, extends the wavelet family; this family of wavelets exhibits the properties of linear phase, which is needed for signal and image reconstruction. In the subband filtering community it is well known that symmetry and exact reconstruction are incompatible, except for the Haar, if the same FIR filters are used for reconstruction and decomposition; so, to get round this obstacle, two wavelets instead of just one are introduced:

· ’, used in analysis for the decomposition, and  used in synthesis for the reconstruction, that are related by duality,

· At the same time also two scaling function ’ and  are introduced.
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Figure B.5 : Examples of biorthogonal CDF wavelets family.

The useful properties for analysis, like oscillations and zero moments, can be concentrated on the ’ function, whereas the interesting properties for synthesis, like regularity, are assigned to the function; the separation of these two tasks proves really useful.’ and  can have very different regularity properties and the four wavelet and scaling functions are zero outside of a certain segment. Table B.2 summarises the support width, the number of vanishing moments, the number of derivatives and the continuity of biorthogonal wavelet functions. The father wavelet  and the dual father wavelet ’ have zero vanishing moments are not listed in column of the Table B.2. A last thing to say is that the biorthogonal wavelet used in the tests are spline biorthogonal, as described in the book [D.1].

	
	Support

Length
	Vanishing

Moments
	Number of Derivatives
	Continuous

	Wavelet
	’, 
	’, 
	
	’
	, 
	’, ’
	, 
	’, ’

	bs 1.1
	1
	1
	0
	0
	0
	0
	No
	No

	bs 1.3
	1
	5
	2
	4
	0
	1
	No
	Yes

	bs 1.5
	1
	9
	4
	8
	0
	1
	No
	Yes

	bs 2.2
	2
	4
	2
	4
	0
	0
	No
	No

	bs 2.4
	2
	8
	4
	8
	0
	0
	No
	No

	bs 2.6
	2
	12
	6
	12
	0
	1
	No
	Yes

	bs 2.8
	2
	16
	8
	16
	0
	2
	No
	Yes

	bs 3.1
	3
	3
	0
	2
	1
	0
	Yes
	No

	bs 3.3
	3
	7
	2
	6
	1
	0
	Yes
	No

	bs 3.5
	3
	11
	4
	10
	1
	0
	Yes
	No

	bs 3.7
	3
	15
	6
	14
	1
	1
	Yes
	Yes

	bs 3.9
	3
	19
	8
	18
	1
	1
	Yes
	Yes


Table B.2 : Biorthogonal wavelets and their properties.
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Figure B.6 : Examples of biorthogonal CDF wavelets family.

We have used this wavelet: Bio CDF 1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7 and 3.9; in the figures B.4, B.5, B.6 and B.7 some examples of biorthogonal CDF wavelets are depicted. In total 24 filters are utilised: 12 orthogonal and 12 biorthogonal; another goal of the tests is to make a good comparison between these different kinds of filters in relation to the many features as the image transformation, the image reconstruction, the quality, the compression and the coefficient meaning.
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Figure B.7 : Examples of biorthogonal CDF wavelets family.

	N
	Daubechies
	Coifman
	Biorthogonal

analysis
	Biorthogonal

synthesis

	2
	6
	8
	10
	6

	3
	8
	12
	14
	8

	4
	10
	14
	18
	10

	5
	12
	18
	22
	12

	6
	14
	20
	26
	14

	7
	16
	24
	30
	16

	8
	18
	26
	34
	18

	9
	20
	30
	38
	20


Table B.3 : Lengths of Coifman, Daubechies and biorthogonal scaling vectors 

for a given range N.

B.3.4. Comparison among Wavelets

The comparison between orthogonal Daubechies and Coiflet with biorthogonal wavelets shows that with the same range N
 the lengths of the scaling vectors are different; in fact it is: 2N + 2 for Daubechies, 3N + 3 and 3N + 2
 for Coiflet, 2N + 2 and 4N + 2
 for the biorthogonal. So from Table B.3, the Daubechies wavelet system has for every value of N the least length, 1.5 times compared Coiflet and 2-2.5 times compared to biorthogonal; on the other hand, the Coiflet wavelet system and the biorthogonal are more symmetric than the Daubechies.

It is possible to have another kind of comparison if the 5 Sobolev smoothness using the Eirola’s theorem [R.1] are calculated; the results are shown in the Figure B.8. From these curves it is depicted that the biorthogonal synthesis filters are every time slightly smoother than Coifman and Daubechies by 0.3-0.6 and 0.7-0.8 respectively; the difference between synthesis and analysis biorthogonal filters is 1.0-1.2.

	N
	Daubechies
	Coifman
	Biorthogonal

analysis
	Biorthogonal

synthesis

	2
	1.415
	1.773
	1.200
	1.839

	3
	1.775
	1.836
	1.179
	2.441

	4
	2.096
	2.449
	1.772
	2.714

	5
	2.388
	2.485
	1.773
	3.175

	6
	2.658
	3.025
	2.292
	3.409

	7
	2.914
	3.046
	2.305
	3.793

	8
	3.161
	3.557
	2.793
	4.004

	9
	3.402
	3.566
	2.815
	4.344


Table B.4 : Smoothness of Coifman, Daubechies and biorthogonal scaling vectors for a given range N.
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Figure B.8 : Comparison of the Sobolev Smoothness. 




� For further information see section 3.2.


� http://www-stat.stanford.edu/~wavelab/


� http://www.mathworks.com/products/wavelet/


� Quadrature Mirror Filter.


� Dyadic = binary, number represented in power of two.


� Except the Haar.


� Cohen-Daubechies-Feauveau wavelet


� Range of the Vanishing Moments of the Wavelet function.


� Respectively for odd and even N.


� Respectively for the synthesis and the analysis scaling vector.
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