QUASI-RANDOM ACCESS DYNAMIC
ARRAY

Giovanni Santostefano
(11-18-2008) ver. 1.0
http://santostefanogiovanni.blogspot.com
email: idmgiovanni@libero.it

The dynamic array is a linked list of static arrays.
This can give a semi-random access based on how many times
array is extended out of bounds.

For a list of n static array we have an access complexity of O(n+1)
The dynamic array contains m elements, with m>n because every
subarray had a surplus space of 1/3 of his declared dimension.

So if we declare 3 items array the real array is large 4 items.

If we extend the array of 1 item, no extra node is built.

Lets see next how the dinamic array is built step by step.

http://santostefanogiovanni.blogspot.com/

STEP 1
Declaration of a dynamic array of 10 elements

subarrays=1 size=10 real size=13

STEP 2
Enlarging the array by 2 elements

subarrays=1 size=12 real size=13

STEP 3
Enlarging the array by 10 elements

subarrays=2 size=22 real size=25

And so on!
When we extend an array over the extraspace another node

is created with the static array of the proper dimension plus
the new exira space

ACCESS POLITICS

To access to the array items we pass through the list and find the
node that contains the array with the indexed item.
Take the previous example.

size=9 real size=12

size=13 real size=13 — »

subarrays=2 size=22 real size=25

If it's supposed to access to the 5" element, we start reading the
first node. We know that the node size is 13 > 5. Then we returns
the data[5] element of the actual node. This is also the best case
O(1).

Let's take for example the 20" node. We set shift=0.

We start by the first node and we see that the size see 13 < 20 then
we set shift=shift+node.size (13) and proceed with the next node.
The next node has shift+size that is 22 > 20. Then we have to
return the 20-shift item -> data[20-shift].

So if n is the number of subarrays (nodes of the list) we can access
to a generic item in O(n+1) => O(n).

ADVANTAGES / DISADVANTAGES

DISADVANTAGES

QUASI-random access

The disadvantage of this system compared to a generic vector is
that we doesn't access to the elements in O(1) time but in O(n) with
n the number of subarrays.

ADVANTAGES

This system avoid the copy of large datas in the case of array
extension.

In the normal dynamic array when we extend over the extra size, we
have to allocate a larger new array and copy all the datas inside the
new one.

With this system we simply add a new node with the space required
for the new items.

This dynamic array system is only good for lots of “big” array
extensions

TECHNIQUES

ALLOCATION

To extend the array we must add an item on the tail of the list.

We have to also maintain a pointer to the list last node.

When we receive an access dynarr[x] with x greater than the
dynamic array size we first control if the extra space (present only in
the last node) can resolve our request.

If so we change the size parameter of the last node and return the
control on the proper item.

Otherwise we have to change the size of the last node to his real
size and allocate a new node with

new_node_items=x-(prev. array real size)+ (1/3*x-(prev. array real size))
new_node_sizeparam=x-(prev. array real size)

new_node_realsizeparam=x-(prev. array real size)+ (1/3*x-(prev. array real size))

Then we update the dynamic array descriptor and return the access
to the requested item.

If we doesn't use the 1/3 extra space we can't prevent small
allocations by creating new nodes. Without extra-space each
allocation request must take one physical allocation.

So we can have an array of m items built into n nodes. With m=n we
have the list same access complexity.

We count to have n<m

DEALLOCATION

To reduce the size of the array we proceed removing nodes if
necessary.

First we take a look the last node.

If (new_size > dynarray.size — lastnode.size) then
lastnode.size=lastnode.size-(new_size - (dynarray.size — lastnode.size))

So we have that

size=9 real size=12

size=13 real size=13 | »

subarrays=2 size=22 real size=25

REDUCE TO SIZE 20

T

size=7 real size=12

size=13 real size=13 — »

subarrays=2 size=20 real size=25

No deallocation is performed in this case. We also have more extra-
space.

If (new_size < dynarray.size — lastnode.size) then
deallocate last node and
lastnode.size=lastnode.size-(new_size - (dynarray.size — lastnode.size))

So we have that

size=9 real size=12

size=13 real size=13

subarrays=2 size=22 real size=25

REDUCE TO SIZE 10

size=10 real size=13 slE= //ewﬂz

a

subarrays=1 size=10 real size=13

NULL

The deallocation is performed and we have the new extra-space.
But this code is not really good because we have to show the real
pseudo-work to remove many nodes.

So take a look to the pseudocode in the next page.

PSEUDOCODE FOR THE REMOVAL

while (new_size < dynarray.size — lastnode.size)

{
dynarray.realsize=dynarray.size-lastnode.size;
dynarray.size=dynarray.realsize;
dynarray.subarrays=dynarray.subarrays-1;
dynarray.last=lastnode.previous;
dynarray.last.next=NULL;
delete last node;

}

lastnode.size=Ilastnode.size-(new_size - (dynarray.size — lastnode.size));

CONCLUSIONS

This is the quasi-random access dynamic array.

As you can see in certain conditions is good to lose complete
random access to elements to obtain fast array size enlargement
without recopy lots of datas in a bigger array.

Good also for memory critical systems.

LICENCE

This work is licensed under the Creative Commons Attribution-
Share Alike 2.5 ltaly License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/2.5/it/ or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

