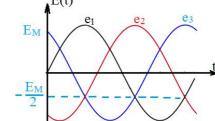
### SISTEMI TRIFASE

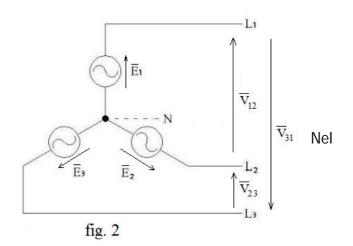

I sistemi 3fase hanno fondamentale importanza nella produzione, trasformazione e trasmissione dell'energia elettrica.

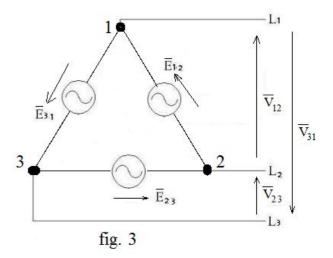
Il sistema trifase è applicato in campo industriale o comunque per impianti con macchinari di maggiore potenza.

Un sistema trifase di tensione e di corrente viene normalmente generato da un <u>alternatore trifase</u>, che una macchina rotante in grado di trasformare potenza meccanica in elettrica. Si può considerare tale macchina come l'insieme di **tre generatori monofase**, ognuno dei quali sviluppa una forza elettromotrice (f.e.m) alteranata sinusoidale, che:

- hanno lo stesso valore efficace E = E<sub>M</sub>/v2 (E<sub>M</sub>: 300-480 V);
- hanno la stessa frequenza (50 Hz);
- sono sfasati tra loro di 120°.

In questo caso, il sistema delle tre tensioni viene chiamato **isofrequenziale** e **simmetrico**. In caso contrario il sistema è detto dissimmetrico.





### **TENSIONI DI FASE E TENSIONI DI LINEA**

Il <u>sistema di distribuzione trifase</u> si compone di <u>tre fili di linea</u> ( $L_1$ ,  $L_2$ ,  $L_3$ : indicate anche con le lettere **R**,**S**,**T**) e di <u>un filo neutro</u> (**0**: indicato con N) che può anche mancare.

Un <u>generatore trifase</u> può essere ottenuto collegando tre generatori monofase sinusoidali, isofrequenziali in modo da costituire un tripolo . La connessione è detta a:

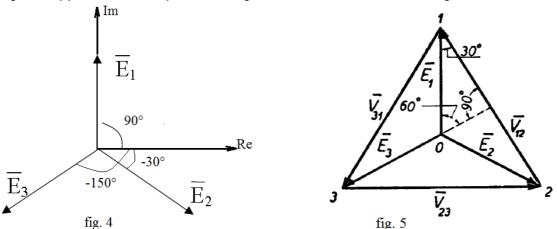
- stella (fig. 2);
- triangolo (fig. 3).





**COLLEGAMENTO A STELLA**, le tensioni di  $e_1(t)$ ,  $e_2(t)$ ,  $e_3(t)$  presenti tra ciascun filo di linea ed il neutro sono chiamate <u>tensioni stellate</u> (o <u>tensioni di fase</u>) alcune volte sono rappresentate con  $V_f$  e sono indicati con i seguenti vettori  $E_1$ ,  $E_2$ ,  $E_3$ . Si suppone che, le tre tensioni sono espresse con le formule:

$$\mathbf{e}_{1}(t) = \sqrt{2} \, \, \mathrm{E} \, \sin \left( \omega \, t \right) \qquad \mathbf{e}_{2}(t) = \sqrt{2} \, \, \mathrm{E} \, \sin \left( \omega \, t - \frac{2}{3} \pi \right) \qquad \mathbf{e}_{3}(t) = \sqrt{2} \, \, \mathrm{E} \, \sin \left( \omega \, t - \frac{4}{3} \pi \right)$$


Nella forma polare:

$$\overline{\mathbf{E}}_1 = E \mathbf{20^\circ} = E \, e^{\,j\,\pi/2} \quad \overline{\mathbf{E}}_2 = E \mathbf{2-30^\circ} = E \, e^{-j\,2\pi/3} \quad \overline{\mathbf{E}}_3 = E \mathbf{2-150^\circ} = E \, e^{-j\,4\pi/3}$$
 Nella forma cartesiana o algebrica:

$$\overline{E}_1 = E(\cos 90 + j \sin 90) = j E \qquad \overline{E}_2 = E[\cos(-30) + j \sin(-30)] = E(\frac{\sqrt{3}}{2} - j \frac{1}{2})$$

$$\overline{E}_3 = E[\cos(-150) + j \sin(-150) = -E(\frac{\sqrt{3}}{2} + j \frac{1}{2})$$

Vengono rappresentate nel piano immaginario di Gauss, mediante la fig. 4



Le **tensioni di linea o concatenate** (fig. 5) sono sfasati fra loro di 120° e vengono rappresentate con i vettori  $V_{12}$ ,  $V_{23}$ ,  $V_{31}$  attraverso le seguenti formule:  $V_{12} = E_1 - E_2$ ;  $V_{23} = E_2 - E_3$ ;  $V_{31} = E_3 - E_4$  utilizzando la forma cartesiana, si ottiene che:

$$\overline{V}_{12} = E \left(-\frac{\sqrt{3}}{2} + j \frac{3}{2}\right)$$
  $\overline{V}_{23} = \sqrt{3} E$   $\overline{V}_{31} = -E \left(\frac{\sqrt{3}}{2} + j \frac{3}{2}\right)$ 

Indicando con  $V_l$  il valore efficace comune delle tre tensioni concatenate, si ha:

$$V_l = \sqrt{3} E$$

Nel COLLEGAMENTO A DELTA O TRIANGOLO, le <u>tensioni di fase</u> indicati con i vettori  $E_{12}$ ,  $E_{23}$ ,  $E_{31}$ , risultano uguali alle tensioni di linea  $V_{12}$ ,  $V_{23}$ ,  $V_{31}$ .

$$V_l = E$$

### La proprietà di una terna simmetrica di tensione

In generale, si può dire che la somma algebrica delle tensioni di una terna simmetrica è sempre nulla (2° principio di Kirchhoff alla maglia)

$$e_1(t) + e_2(t) + e_3(t) = 0$$
 oppure  $\overline{\mathbf{E}}_1 + \overline{\mathbf{E}}_2 + \overline{\mathbf{E}}_3 = 0$ 


È noto che la distribuzione BT, in Italia, è realizzata con una tensione stellata avente valore efficace di 220V, che corrisponde ad una tensione concatenata avente valore efficace di 380V (380=v3·220)

### **CORRENTI DI FASE E CORRENTI DI LINEA**

1- collegamento su un carico equilibrato a triangolo un carico trifase si dice equilibrato, quando è costituito da tre impedenze uguali tra loro sia come modulo che come argomento o fase.

$$(\overline{\overline{\mathbf{Z}}} = \overline{\mathbf{Z}}_1 = \overline{\mathbf{Z}}_2 = \overline{\mathbf{Z}}_3 = Z e^{j\phi})$$

In questo caso, la somma algebrica delle correnti è uguale a zero (1° principio di Kirchhoff), in caso contrario il carico si dice squilibrato.

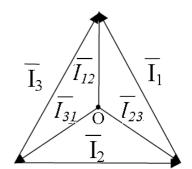


http://digilander.libero.it/alihajj

I1, I2 e I3 sono le correnti di linea che, hanno un valore efficace uguale a  $I_l$   $I_{12}$ ,  $I_{23}$  e  $I_{31}$  sono le correnti di fase che, hanno un valore efficace uguale a  $I_f$   $\phi$ : indica la fase o l'argomento dell'impedenza Z, che determina a sua volta, lo sfasamento tra la tensione e la corrente.

Mediante la legge di Ohm, si ha:

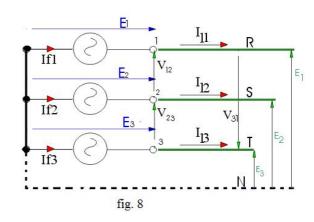
$$\overline{I}_{12} = \frac{\overline{V}_{12}}{\overline{z}} \qquad \overline{I}_{23} = \frac{\overline{V}_{23}}{\overline{z}} \qquad \overline{I}_{31} = \frac{\overline{V}_{31}}{\overline{z}}$$


 $V_{12}=V_{23}=V_{31}$  = V : le tre tensioni hanno lo stesso valore efficae I valori efficace di tutte le correnti di fase , è:  $I_f$ =  $I_{12}$ =  $I_{23}$  =  $I_{31}$  e si

avrà: 
$$\overline{I}_f = \frac{\overline{v}}{\overline{z}}$$

Le correnti di linea

$$\overline{\mathbf{I}}_1 = \overline{I}_{12} - \overline{I}_{31}$$
  $\overline{\mathbf{I}}_2 = \overline{I}_{23} - \overline{I}_{12}$   $\overline{\mathbf{I}}_3 = \overline{I}_{31} - \overline{I}_{23}$ 


I valori efficace di tutte le correnti di linea , è:  $I_l$  =  $I_1$  =  $I_2$  =  $I_3$  TRA I VALORI EFFICACE DI FASE E DI LINEA, VALE LA RELAZIONE



$$I_l = \sqrt{3} I_f$$

Invece, nel collegamento a stella, le correnti di linea sono uguali alle correnti di fase (fig. 8)

$$I_l = I_f$$



### POTENZE NEI SISTEMI TRIFASE SIMMETRICI ED EQUILIBRATI

Anche per i sistemi trifase vengono definite le tre potenze tipiche delle reti in corrente alternata: potenza attiva, potenza reattiva e apparente.

L'IMPEDENZA DEL CARICO:  $\overline{Z} = R + j X$  e  $\phi$ : sfasamento del carico.

Modulo : 
$$Z = \sqrt{R^2 + X^2}$$
 fase:  $\varphi = \arctan(\frac{X}{R})$ 

### **Teorema di Boucherot**

- LA POTENZA ATTIVA TOTALE È LA SOMMA ARITMETICA DELLE SINGOLE POTENZE ATTIVE

Carico a stella Carico a triangolo 
$$P = 3|E|I_L|\cos \varphi = \sqrt{3}|V|I_L|\cos \varphi$$
 
$$P = 3|V|I_f|\cos \varphi = \sqrt{3}|V|I_L|\cos \varphi$$
 
$$P = 3RI_L^2$$
 
$$P = 3RI_f^2$$

- LA POTENZA REATTIVA È LA SOMMA ALGEBRICA DELLE SINGOLE POTENZE REATTIVE

Carico a stella Carico a triangolo 
$$Q = 3|E|I_L|\sin \varphi = \sqrt{3}|V|I_L|\sin \varphi$$
 
$$Q = 3|V|I_f|\sin \varphi = \sqrt{3}|V|I_L|\sin \varphi$$
 
$$Q = 3XI_f^2$$
 
$$Q = 3XI_f^2$$

- LA POTENZA APPARENTE È LA SOMMA VETTORIALE DELLE SINGOLE POTENZE APPARENTI

$$\overline{S} = \overline{P} + j \overline{Q}$$
Carico a stella
$$S = 3|E||I_L| = \sqrt{3}|V||I_L|$$

$$S = 3|Z|I_L^2$$
Carico a triangolo
$$S = 3|V||I_f| = \sqrt{3}|V||I_L|$$

$$S = 3|Z|I_L^2$$

$$S = 3|Z|I_f^2$$

### IL FATTORE DI POTENZA:

$$\cos \varphi = \frac{P}{S} = \cos \left[ \arctan \left( \frac{X}{R} \right) \right]$$

ouesto parametro ha un ruolo molto importante nei circuiti in corrente alternata. Dal punto di vista economico:

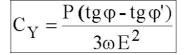
- $per cos(\phi) < 0.7$ : l'utente ha l'obbligo di rifasare, per ridurre l'energia reattiva induttiva causata dagli avvolgimenti di motori e trasformatori;
- $\underline{\text{per } 0.7 < \cos(\phi) < 0.9:}$  è l'esempio delle reti elettriche domestiche, l'utente in questo caso, paga una penale all'ente fornitrice, per l'energia reattiva prodotta dal rifasamento.

### RIFASAMENTO DI UN CARICO TRIFASE

Il RIFASAMENTO vine comunemente impiegato negli impianti elettrici per mantenere rigorosamente costante a 0,9 il FATTORE DI POTENZA di un impianto.

Una carico reattivo (motore, trasformatore) produce unicamente un aumento delle perdite di potenza in linea e allora rifasare serve a ottimizzare il rendimento per una migliore e più economica utilizzazione dell'energia, cioè serve per il risparmio di consumo della corrente elettrica.

Il rifasamento di un carico trifase si può realizzare inserendo tre condensatori che possono essere collegati a stella o a triangolo.


# Rifasamento con condensatori collegati a stella (fig. 11)

si indica con:

- φ': lo sfasamento tra V e I;
- φ: lo sfasamento tra V e l<sub>i</sub>;
- Q<sub>c</sub>: la potenza reattiva capacitiva che il condensatore assorbe dalla rete;
- P, Q e S sono le potenze (attiva, reattiva e apparente ) del carico;
- $P_{r_r}Q_r \in S_r$  sono le potenze (attiva, reattiva e apparente ) dopo il rifasamento;

$$Q_C = Q - Q_r = P. tg(\phi) - P. tg(\phi') = P. [tg(\phi) - tg(\phi')]$$

Noto che il valore di Q<sub>C</sub> totale è la somma delle singole potenze reattiva



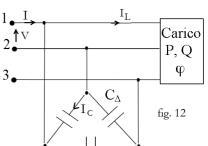



fig. 11

Carico

P, Q,

http://digilander.libero.it/alihajj

$$Q_{C} = 3EI_{C} = 3B_{C}E^{2} = 3\omega C_{Y} E^{2}$$

## Rifasamento con condensatori collegati a delta o triangolo (fig. 12)

$$|Q_C| = 3\omega C_\Delta V^2 = P (tg \varphi - tg \varphi')$$
  $C_\Delta = \frac{P (tg \varphi - tg \varphi')}{3\omega V^2}$ 

**NOTA**: Nel collegamento a triangolo i condensatori sono sottoposti ad una tensione concatenata mentre nel collegamento a stella sono sottoposti alla tensione di fase. Inoltre,

$$C_{\Delta} = \frac{P(tg \varphi - tg \varphi')}{3\omega V^2} = \frac{P(tg \varphi - tg \varphi')}{3\omega 3E^2} = \frac{C_{Y}}{3}$$

La capacità nel collegamento a stella è tre volte più grande di quella richiesta nel collegamento a triangolo.

La scelta del tipo di collegamento dipende da considerazioni di varia natura.

Nel caso di reti di bassa tensione (V=380 V) si privileggia il vantaggio economico offerto dalla riduzione della capacità nel collegamento a triangolo.

Per le reti di media tensione (V>10 kV) diventa decisivo il problema della tenuta del dielettrico (isolante): si preferisce quindi la più contenuta tensione di esercizio del collegamento a stella.

### CADUTA DI TENSIONE E RENDIMENTO

Si definisce caduta di tensione industriale della linea la differenza aritmetica tra la tensione alla partenza (V<sub>P</sub>) e la tensione all'arrivo (V<sub>A</sub>) a carico

### Nel caso di una linea monofase

$$\overline{\Delta V_{L}} = \overline{V_{P}} - \overline{V_{A}} = \overline{Z_{L}} \overline{I_{L}}$$

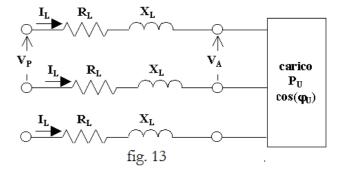
$$\Delta V_L \cong I_L \cdot [R_L \cdot cos(\phi_U) + X_L \cdot sen(\phi_U)] \quad [\text{V}]$$

In termine percentuale riferita alla tensione nominale Vn

$$\Delta V_L \% = \frac{I_L \cdot [R_L \cdot cos(\phi_U) + X_L \cdot sen(\phi_U)]}{V_D} \cdot 100 \quad [V]$$

Si definisce <u>rendimento</u> della linea:

dove  $P_A = P_U$  è la potenza all'arrivo della linea mentre  $P_P$  è la potenza alla partenza della linea.


 $P_L$  è la potenza persa in linea per effetto joule,  $P_L = P_P - P_A$ 

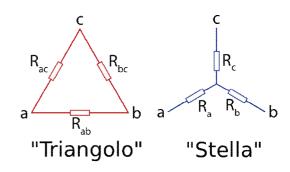
Al fine di ridurre la c.d.t. industriale ed aumentare il rendimento della linea, se il carico ha un basso fattore di potenza si può procedere al <u>rifasamento del carico</u> stesso che consiste nel porgli in parallelo un condensatore di adeguata capacità. Indicando con  $\phi_A$ \* lo sfasamento desiderato all'arrivo della linea (con ovviamente  $\phi_A^* < \phi_U$ ), il valore della capacità rifasante sarà dato da:

$$C = \frac{P_U \cdot [tag(\phi_U) - tag(\phi_A^{~\star})]}{\left. \boldsymbol{\omega} \cdot \boldsymbol{V_A}^{~2} \right.} ~[F]$$

### Nel caso di una linea 3fase

$$\Delta V_{L} = \sqrt{3} \ I_{L} \cdot [R_{L} \cdot \cos(\varphi_{U}) + X_{L} \cdot \sin(\varphi_{U})] = \sqrt{3} (E_{1} - E_{2})$$
 [V]   
 http://digilander.libero.it/alihajj




### Il suo valore percentuale non deve superare il 4%.

La potenza persa in linea per effetto joule sulle tre fasi:  $P_L = 3 R_L I_L^2$ 

 $\eta_{L} = \frac{P_{A}}{P_{P}}$ Il rendimento di linea:

### passaggio stella-triangolo

$$R_{bc} = \frac{R_a R_b + R_a R_c + R_b R_c}{R_a}$$
 
$$R_{ac} = \frac{R_a R_b + R_a R_c + R_b R_c}{R_b}$$
 
$$R_{ab} = \frac{R_a R_b + R_a R_c + R_b R_c}{R_c}$$



### passaggio triangolo-stella

$$R_{a} = \frac{R_{ab}R_{ac}}{R_{ab} + R_{bc} + R_{ac}} \qquad R_{b} = \frac{R_{ab}R_{bc}}{R_{ab} + R_{bc} + R_{ac}} \qquad R_{c} = \frac{R_{bc}R_{ac}}{R_{ab} + R_{bc} + R_{ac}}$$

### Esercizio no.1

Un carico trifase, costituito da tre resistenza collegate a triangolo di valore ciascuna  $8\Omega$  è alimentato con tensioni concatenate di valore  $V_L$ =220V.

Trovare le correnti di fase sulle tre resistenze e la potenza.

 $R.[I_F=27,5A]$ 

# $V_{l2}$ $I_{l}$ $I_{l}$

### Esercizio no.2

P=18,15kW]

Un carico trifase, costituito da tre resistenza collegate a stella di valore ciascuna  $4\Omega$  viene alimentato da un sistema trifase simmetrico con tensioni concatenate di valore  $V_L$ =380V. Si vogliono conoscere le correnti di linea e la potenza complessiva assorbita dal carico, disegna anche il diagramma vettoriale con le tensioni di fase, le tensioni concatenate e le correnti di linea .



### Esercizio no.3

Un sistema di tensioni trifase simmetrico con tensioni concatenate  $V_L$ =260V alimenta un carico equilibrato, costituito da tre impedenze uguali di tipo ohmico-induttivo, con R=4  $\Omega$  e X=3 $\Omega$  collegate a triangolo. Calcola: Al Le correnti di linea.

- B] La potenza attiva e reattiva totale assorbita dal carico.
- C] Ripeti i due precedenti calcoli col carico collegato a stella

### $R.[I_L=90A P_T=32,448kW Q_T=24,336kVAR P_S=10,808kW Q_S=8,106kVAR]$